搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu刃型扩展位错附近局部应变场的原子模拟研究

邵宇飞 杨鑫 李久会 赵星

引用本文:
Citation:

Cu刃型扩展位错附近局部应变场的原子模拟研究

邵宇飞, 杨鑫, 李久会, 赵星

Atomistic simulation study on the local strain fields around an extended edge dislocation in copper

Shao Yu-Fei, Yang Xin, Li Jiu-Hui, Zhao Xing
PDF
导出引用
  • 通过结合virial应变分析技术的准连续介质多尺度模拟方法研究了金属Cu刃型扩展位错的局部应变场. 结果表明在距离位错核心几十纳米的区域内晶体处于小变形状态,virial应变计算结果与弹性理论预测结果符合得相当好,当距离位错核心仅几纳米时,晶格畸变加剧,virial应变极大值出现在扩展位错两端的Shockley分位错芯部. 进一步分析表明Shockley分位错芯部严重畸变区大致呈长轴7b1、短轴3b1的椭圆形,其中b1为分位错柏氏矢量的长度.
    The local strain fields around an extended edge dislocation in copper are studied via the quasicontinuum multiscale simulation method combined with the virial strain calculation techniques. Results show that in the regions, tens of nanometers away from the dislocation, atoms are experiencing infinitesimal strain; virial strain calculation results are consistent with the predictions from elastic theory very well. In the regions near the dislocation, the virial strain fields can outline the core areas of Shockley partial dislocations precisely, which are in the shape of ellipse with a longer axis 7b1 and a shorter axis 3b1, where b1 is the length of burgers vector of the partial dislocation.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB606403)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB606403).
    [1]

    Hirth J P, Lothe J 1982 Theory of dislocation (New York: Wiley) p3

    [2]

    Pan J S, Tong J M, Tian M B 1998 Fundamentals of Materials Science(Beijing: Tsinghua University Press) p219 (in Chinese) [潘金生, 仝健民, 田民波1998 材料科学基础(北京: 清华大学出版社) 第219 页]

    [3]

    Swygenhoven H V, Derlet P M, Hasnaoui A 2002 Phys. Rev. B 66 024101

    [4]

    Wu X L, Ma E 2006 Appl. Phys. Lett. 88 231911

    [5]

    Zhou N G, Zhou L, Du D X 2006 Acta Physica Sinica 55 372 (in Chinese)[周耐根, 周浪, 杜丹旭2006 物理学报 55 372]

    [6]

    Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108

    [7]

    Sansoz F, Stevenson K D 2011 Phys. Rev. B 83 224101

    [8]

    Shao Y F, Yang X, Zhao X, Wang S Q 2012 Chin. Phys. B 21 083101

    [9]

    Zhang B, Xia X M, Li Q 2012 Rare Metals 31 517

    [10]

    Yu X X, Wang C Y 2013 Chin. Phys. B 22 027101

    [11]

    Shan Z W, Wiezorek J M K, Stach E A, Follstaedt D M, Knapp J A, Mao S X 2007 Phys. Rev. Lett. 98 095502

    [12]

    Wang L H, Han X D, Liu P, Yue Y H, Zhang Z, Ma E 2010 Phys. Rev. Lett. 105 135501

    [13]

    Zhao C W, Xing Y M, Zhou C E, Bai P C 2008 Acta Mater. 56 2570

    [14]

    Zhao C W, Xing Y M, Bai P C 2009 Chin. Phys. B 18 2464

    [15]

    Woodward C 2005 Mater. Sci. Eng. A 400-401 59

    [16]

    Chen L Q, Wang C Y, Yu T 2008 Chin. Phys. B 17 662

    [17]

    Woodward C, Trinkle D R, Hector Jr L G, Olmsted D L 2008 Phys. Rev. Lett. 100 045507

    [18]

    Chen L Q, Wang C Y, Yu T 2006 Acta Phys. Sin. 55 5980 (in Chinese)[陈丽群, 王崇愚, 于涛2006 物理学报55 5980]

    [19]

    Dao M, Lu L, Asaro R J, De Hosson J T M, Ma E 2007 Acta Mater. 55 4041

    [20]

    Jin Z H, Gumbsch P G, Albe K, Ma E, Lu K, Gleiter H, Hahn H 2008 Acta Mater. 56 1126

    [21]

    Wang Y B, Sui M L 2009 Appl. Phys. Lett. 94 021909

    [22]

    Miller R E, Tadmor E B 2002 J. Computer-Aided Mater. Design 9 203

    [23]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [24]

    Kittel C 1986 Introduction to Solid State Physics (New York: Wiley-Interscience)

    [25]

    Simons G, Wang H 1977 Single Crystal Elastic Constants and Calculated Aggregate Properties (Cambridge, MA: MIT Press)

    [26]

    Carter C B, Ray I L F 1977 Philos. Mag 35 189

    [27]

    Zimmermann J 1999 Ph. D. Dissertation (Stanford: Stanford University)

  • [1]

    Hirth J P, Lothe J 1982 Theory of dislocation (New York: Wiley) p3

    [2]

    Pan J S, Tong J M, Tian M B 1998 Fundamentals of Materials Science(Beijing: Tsinghua University Press) p219 (in Chinese) [潘金生, 仝健民, 田民波1998 材料科学基础(北京: 清华大学出版社) 第219 页]

    [3]

    Swygenhoven H V, Derlet P M, Hasnaoui A 2002 Phys. Rev. B 66 024101

    [4]

    Wu X L, Ma E 2006 Appl. Phys. Lett. 88 231911

    [5]

    Zhou N G, Zhou L, Du D X 2006 Acta Physica Sinica 55 372 (in Chinese)[周耐根, 周浪, 杜丹旭2006 物理学报 55 372]

    [6]

    Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108

    [7]

    Sansoz F, Stevenson K D 2011 Phys. Rev. B 83 224101

    [8]

    Shao Y F, Yang X, Zhao X, Wang S Q 2012 Chin. Phys. B 21 083101

    [9]

    Zhang B, Xia X M, Li Q 2012 Rare Metals 31 517

    [10]

    Yu X X, Wang C Y 2013 Chin. Phys. B 22 027101

    [11]

    Shan Z W, Wiezorek J M K, Stach E A, Follstaedt D M, Knapp J A, Mao S X 2007 Phys. Rev. Lett. 98 095502

    [12]

    Wang L H, Han X D, Liu P, Yue Y H, Zhang Z, Ma E 2010 Phys. Rev. Lett. 105 135501

    [13]

    Zhao C W, Xing Y M, Zhou C E, Bai P C 2008 Acta Mater. 56 2570

    [14]

    Zhao C W, Xing Y M, Bai P C 2009 Chin. Phys. B 18 2464

    [15]

    Woodward C 2005 Mater. Sci. Eng. A 400-401 59

    [16]

    Chen L Q, Wang C Y, Yu T 2008 Chin. Phys. B 17 662

    [17]

    Woodward C, Trinkle D R, Hector Jr L G, Olmsted D L 2008 Phys. Rev. Lett. 100 045507

    [18]

    Chen L Q, Wang C Y, Yu T 2006 Acta Phys. Sin. 55 5980 (in Chinese)[陈丽群, 王崇愚, 于涛2006 物理学报55 5980]

    [19]

    Dao M, Lu L, Asaro R J, De Hosson J T M, Ma E 2007 Acta Mater. 55 4041

    [20]

    Jin Z H, Gumbsch P G, Albe K, Ma E, Lu K, Gleiter H, Hahn H 2008 Acta Mater. 56 1126

    [21]

    Wang Y B, Sui M L 2009 Appl. Phys. Lett. 94 021909

    [22]

    Miller R E, Tadmor E B 2002 J. Computer-Aided Mater. Design 9 203

    [23]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [24]

    Kittel C 1986 Introduction to Solid State Physics (New York: Wiley-Interscience)

    [25]

    Simons G, Wang H 1977 Single Crystal Elastic Constants and Calculated Aggregate Properties (Cambridge, MA: MIT Press)

    [26]

    Carter C B, Ray I L F 1977 Philos. Mag 35 189

    [27]

    Zimmermann J 1999 Ph. D. Dissertation (Stanford: Stanford University)

计量
  • 文章访问数:  2602
  • PDF下载量:  778
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-27
  • 修回日期:  2013-12-24
  • 刊出日期:  2014-04-05

Cu刃型扩展位错附近局部应变场的原子模拟研究

  • 1. 辽宁工程技术大学, 应用物理与技术研究所, 葫芦岛 125105;
  • 2. 辽宁工业大学, 理学院, 锦州 121001
    基金项目: 国家重点基础研究发展计划(批准号:2011CB606403)资助的课题.

摘要: 通过结合virial应变分析技术的准连续介质多尺度模拟方法研究了金属Cu刃型扩展位错的局部应变场. 结果表明在距离位错核心几十纳米的区域内晶体处于小变形状态,virial应变计算结果与弹性理论预测结果符合得相当好,当距离位错核心仅几纳米时,晶格畸变加剧,virial应变极大值出现在扩展位错两端的Shockley分位错芯部. 进一步分析表明Shockley分位错芯部严重畸变区大致呈长轴7b1、短轴3b1的椭圆形,其中b1为分位错柏氏矢量的长度.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回