-
镁合金作为最轻的金属结构材料, 被誉为21世纪的“绿色工程材料”, 具有广阔的应用前景. 晶体-非晶双相纳米镁材料更是表现了优异力学性能, 但是晶体中位错与非晶相的相互作用机制尚不明确. 本文采用分子动力学模拟方法研究了剪切载荷作用下纳米晶镁中刃位错与非晶相的相互作用机制. 研究结果表明, 纳米晶镁中非晶相与位错的相互作用机制表现出一定的尺寸依赖性. 相较于非晶相尺寸较小的样品, 较大的非晶相尺寸会导致较大的二次应力强化现象. 非晶相和位错的作用机制主要归结为非晶相对位错的钉扎作用. 对于非晶相尺寸较小的样品, 非晶相对位错的钉扎作用有限, 钉扎时间较短, 其相互作用主要是位错绕过非晶相的机制; 而对于非晶相尺寸较大的样品, 非晶相对位错的钉扎作用较大, 钉扎时间较长, 其相互作用主要是非晶相引发的位错的交滑移机制. 本文的研究结果对于设计和制备高性能的镁及其合金材料具有一定的参考价值和指导意义.
-
关键词:
- 晶体-非晶双相纳米镁 /
- 位错 /
- 变形机制 /
- 分子动力学模拟
As the lightest metal structural material, magnesium alloy is known as the “green engineering material” of the 21st century. Especially, crystalline-amorphous dual-phase nanostructure magnesium materials exhibit excellent mechanical properties, though the mechanism of interaction between the dislocation in crystal and amorphous phase is still under the investigation. In the present work, the interaction between the edge dislocation and amorphous phase in nanocrystalline magnesium under shear load is studied by using molecular dynamics simulation. The result indicates that the interaction mechanism between amorphous phase and dislocation shows the size dependence. Compared with the sample with smaller amorphous size, larger amorphous size will lead to a large second strengthening effect. And the mechanism of the interaction between amorphous phase and dislocation is mainly attributed to the pinning effect of amorphous on the dislocation. For the samples with small amorphous size, the pinning effect of amorphous on the dislocation is limited and the pinning time is shorter. The interaction mechanism is contributed mainly by the dislocation bypassing amorphous phase. While for the samples with larger amorphous size, the pinning effect of amorphous on the dislocation is larger and the pinning time is longer. The interaction is due mainly to the cross slip mechanism of dislocation caused by amorphous phase. The results from this work have a certain reference value and guiding significance for designing and preparing the high-performance magnesium and its alloys.-
Keywords:
- crystalline-amorphous dual-phase nanostructure magnesium /
- dislocation /
- deformation mechanism /
- molecular dynamics simulation
[1] Pollock T M 2010 Science 328 986Google Scholar
[2] Wu Z, Ahmad R, Yin B, Sandlöbes S, Curtin W A 2018 Science 359 447
[3] Liu B Y, Liu F, Yang N, Zhai X B, Zhang L, Yang Y, Li B, Li J, Ma E, Nie J F, Shan Z W 2019 Science 365 73Google Scholar
[4] Wu G, Chan K C, Zhu L, Sun L, Lu J 2017 Nature 545 80Google Scholar
[5] Dai J L, Song H Y, An M R, Wang J Y, Deng Q, Li Y L 2020 J. Appl. Phys. 127 135105Google Scholar
[6] Wang J Y, Song H Y, An M R, Deng Q, Li Y L 2020 Chin. Phys. B 29 066201Google Scholar
[7] Song H Y, Zuo X D, Yin P, An M R, Li Y L 2018 J. Non-Cryst. Solids 494 1Google Scholar
[8] Song H Y, Li Y L 2015 Phys. Lett. A 379 2087Google Scholar
[9] Song H Y, Zuo X D, An M R, Xiao M X, Li Y L 2019 Comput. Mater. Sci. 160 295Google Scholar
[10] Ardell A J 1985 Metall. Trans. A 16 2131Google Scholar
[11] Nie J F 2012 Metall. Mater. Trans. A 43 3891Google Scholar
[12] Gao S, Fivel M, Ma A, Hartmaier A 2015 J. Mech. Phys. Solids 76 276Google Scholar
[13] Santos-Güemes R, Esteban-Manzanares G, Papadimitriou I, Segurado J, Capolungo L, LLorca J 2018 J. Mech. Phys. Solids 118 228Google Scholar
[14] Li J, Liu B, Fang Q H, Huang Z, Liu Y 2017 Ceram. Int. 43 3839Google Scholar
[15] Bryukhanov I A 2020 Int. J. Plast. 135 102834Google Scholar
[16] Cepeda-Jimenez C M, Castillo-Rodríguez M, Perez-Prado M T 2019 Acta Mater. 165 164Google Scholar
[17] Alizadeh R, LLorca R 2020 Acta Mater. 186 475Google Scholar
[18] Huang Z, Yang C, Qi L, Allison J E, Misra A 2019 Mater. Sci. Eng. A 742 278Google Scholar
[19] Esteban-Manzanares G, Alizadeh R, Papadimitriou I, Dickel D, Barrett C D, Lorca J L 2020 Mater. Sci. Eng. A 788 139555Google Scholar
[20] Ye T, Xu Y, Ren J 2019 Mater. Sci. Eng. A 753 146Google Scholar
[21] Habiyaremye F, Guitton A, Schäfer F, Scholz F, Schneider M, Frenzel J, Laplanche G, Maloufi N 2021 Mater. Sci. Eng. A 817 141364Google Scholar
[22] Li H, Gao S, Tomota Y, Li S, Tsuji N, Ohmura T 2021 Acta Mater. 206 116621Google Scholar
[23] Li Y, Ran G, Guo Y, Sun Z, Liu X, Li Y, Qiu X, Xin Y 2021 Acta Mater. 201 462
[24] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁 2021 物理学报 70 106101Google Scholar
Yang Q, Ma L, Geng S C, Lin Y N, Chen T, Sun L N 2021 Acta Phys. Sin. 70 106101Google Scholar
[25] 潘伶, 张昊, 林国斌 2021 物理学报 70 134704Google Scholar
Pan L, Zhang H, Lin G B 2021 Acta Phys. Sin. 70 134704Google Scholar
[26] 申天展, 宋海洋, 安敏荣 2021 物理学报 70 186201Google Scholar
Shen T Z, Song H Y, An M R 2021 Acta Phys. Sin. 70 186201Google Scholar
[27] 刘东静, 王韶铭, 杨平 2021 物理学报 70 187302Google Scholar
Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar
[28] Su M J, Deng Q, An M R, Liu L T, Chen L Y 2021 J. Alloys Compd. 868 159282Google Scholar
[29] Liu X Y, Ohotnicky P P, Adams J B, Lane Rohrer C, Hyland R W 1997 Surf. Sci. 373 357Google Scholar
[30] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[31] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[32] Faken D, Jónsson H 1994 Comp. Mater. Sci. 2 279Google Scholar
[33] Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 08500
[34] Esteban-Manzanares G, Bellón B, Martínez E, Papadimitriou I, LLorca J 2019 J. Mech. Phys. Solids 132 103675Google Scholar
[35] Simar A, Voigt H J L, Wirth B D 2011 Comput. Mater. Sci. 50 1811Google Scholar
[36] Jian W R, Zhang M, Xu S, Beyerlein I J 2020 Model. Simul. Mater. Sci. Eng. 28 045004Google Scholar
-
图 6 图5(f1)中类螺位错的细节图 (a)图5(f1)中类螺位错的具体形貌图, d代表层错宽度; (b) DXA分析出的位错结构图; (c)扩展位错交滑移的细节图
Fig. 6. The details of the like-screw dislocation shown in Fig. 5(f1): (a) The specific morphologies of like-screw dislocation; (b) dislocation structure analyzed by DXA method; (c) the cross-slip details of the extended dislocation.
图 8 位错与非晶相的作用机制 (a)非晶相尺寸较小时的位错绕过机制; (b)非晶相尺寸较大时的扩展位错交滑移机制
Fig. 8. The interaction mechanism of the dislocation and the amorphous phase: (a) The dislocation bypass mechanism for the sample with small amorphous nanopillar size; (b) the cross-slip mechanism of extended dislocation for the sample with larger amorphous nanopillar size.
-
[1] Pollock T M 2010 Science 328 986Google Scholar
[2] Wu Z, Ahmad R, Yin B, Sandlöbes S, Curtin W A 2018 Science 359 447
[3] Liu B Y, Liu F, Yang N, Zhai X B, Zhang L, Yang Y, Li B, Li J, Ma E, Nie J F, Shan Z W 2019 Science 365 73Google Scholar
[4] Wu G, Chan K C, Zhu L, Sun L, Lu J 2017 Nature 545 80Google Scholar
[5] Dai J L, Song H Y, An M R, Wang J Y, Deng Q, Li Y L 2020 J. Appl. Phys. 127 135105Google Scholar
[6] Wang J Y, Song H Y, An M R, Deng Q, Li Y L 2020 Chin. Phys. B 29 066201Google Scholar
[7] Song H Y, Zuo X D, Yin P, An M R, Li Y L 2018 J. Non-Cryst. Solids 494 1Google Scholar
[8] Song H Y, Li Y L 2015 Phys. Lett. A 379 2087Google Scholar
[9] Song H Y, Zuo X D, An M R, Xiao M X, Li Y L 2019 Comput. Mater. Sci. 160 295Google Scholar
[10] Ardell A J 1985 Metall. Trans. A 16 2131Google Scholar
[11] Nie J F 2012 Metall. Mater. Trans. A 43 3891Google Scholar
[12] Gao S, Fivel M, Ma A, Hartmaier A 2015 J. Mech. Phys. Solids 76 276Google Scholar
[13] Santos-Güemes R, Esteban-Manzanares G, Papadimitriou I, Segurado J, Capolungo L, LLorca J 2018 J. Mech. Phys. Solids 118 228Google Scholar
[14] Li J, Liu B, Fang Q H, Huang Z, Liu Y 2017 Ceram. Int. 43 3839Google Scholar
[15] Bryukhanov I A 2020 Int. J. Plast. 135 102834Google Scholar
[16] Cepeda-Jimenez C M, Castillo-Rodríguez M, Perez-Prado M T 2019 Acta Mater. 165 164Google Scholar
[17] Alizadeh R, LLorca R 2020 Acta Mater. 186 475Google Scholar
[18] Huang Z, Yang C, Qi L, Allison J E, Misra A 2019 Mater. Sci. Eng. A 742 278Google Scholar
[19] Esteban-Manzanares G, Alizadeh R, Papadimitriou I, Dickel D, Barrett C D, Lorca J L 2020 Mater. Sci. Eng. A 788 139555Google Scholar
[20] Ye T, Xu Y, Ren J 2019 Mater. Sci. Eng. A 753 146Google Scholar
[21] Habiyaremye F, Guitton A, Schäfer F, Scholz F, Schneider M, Frenzel J, Laplanche G, Maloufi N 2021 Mater. Sci. Eng. A 817 141364Google Scholar
[22] Li H, Gao S, Tomota Y, Li S, Tsuji N, Ohmura T 2021 Acta Mater. 206 116621Google Scholar
[23] Li Y, Ran G, Guo Y, Sun Z, Liu X, Li Y, Qiu X, Xin Y 2021 Acta Mater. 201 462
[24] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁 2021 物理学报 70 106101Google Scholar
Yang Q, Ma L, Geng S C, Lin Y N, Chen T, Sun L N 2021 Acta Phys. Sin. 70 106101Google Scholar
[25] 潘伶, 张昊, 林国斌 2021 物理学报 70 134704Google Scholar
Pan L, Zhang H, Lin G B 2021 Acta Phys. Sin. 70 134704Google Scholar
[26] 申天展, 宋海洋, 安敏荣 2021 物理学报 70 186201Google Scholar
Shen T Z, Song H Y, An M R 2021 Acta Phys. Sin. 70 186201Google Scholar
[27] 刘东静, 王韶铭, 杨平 2021 物理学报 70 187302Google Scholar
Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar
[28] Su M J, Deng Q, An M R, Liu L T, Chen L Y 2021 J. Alloys Compd. 868 159282Google Scholar
[29] Liu X Y, Ohotnicky P P, Adams J B, Lane Rohrer C, Hyland R W 1997 Surf. Sci. 373 357Google Scholar
[30] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[31] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[32] Faken D, Jónsson H 1994 Comp. Mater. Sci. 2 279Google Scholar
[33] Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 08500
[34] Esteban-Manzanares G, Bellón B, Martínez E, Papadimitriou I, LLorca J 2019 J. Mech. Phys. Solids 132 103675Google Scholar
[35] Simar A, Voigt H J L, Wirth B D 2011 Comput. Mater. Sci. 50 1811Google Scholar
[36] Jian W R, Zhang M, Xu S, Beyerlein I J 2020 Model. Simul. Mater. Sci. Eng. 28 045004Google Scholar
计量
- 文章访问数: 6965
- PDF下载量: 119
- 被引次数: 0