搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟

安敏荣 李思澜 宿梦嘉 邓琼 宋海洋

引用本文:
Citation:

尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟

安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋

Molecular dynamics simulation of size dependent plastic deformation mechanism of CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloys

An Min-Rong, Li Si-Lan, Su Meng-Jia, Deng Qiong, Song Hai-Yang
PDF
HTML
导出引用
  • 晶体/非晶双相高熵合金是近年来研究人员提出的获得高强高韧高熵合金的有效策略, 其塑性变形机制和组成相的尺寸密切相关. 本文采用分子动力学模拟方法研究了组成相尺寸对CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的影响. 研究表明, 非晶相尺寸对双相高熵合金的力学行为和塑性变形机制有显著影响. 对于非晶相厚度较小的样品, 塑性变形是位错滑移和面心立方向六方密排结构的相变主导的, 尤其是在非晶厚度为1 nm的样品中观察到了孪晶和位错锁; 非晶相厚度适中时, 双相高熵合金主要通过晶体相中位错滑移、面心立方向六方密排结构的相变和非晶相的剪切带增殖来实现塑性变形; 非晶相厚度较大时, 双相高熵合金的塑性变形则由非晶相中均匀剪切带的形成主导. 此外, 非晶相厚度的增加对位错的形核和发射有延迟作用, 并且, 晶体/非晶双相结构中的非晶相有稳定晶粒的作用. 本文的研究结果对于设计和制备高性能的高熵合金具有一定的科学价值和指导意义.
    Recently proposed crystalline/amorphous dual-phase high-entropy alloy is an effective strategy to obtain high-entropy, high-strength and high-toughness alloys. And the relative plastic deformation mechanism is dependent on the size of component phases. The effect of component phase size on the plastic deformation mechanism of CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloy is investigated by molecular dynamics simulation. The results indicate that the size of amorphous phase has a significant effect on the mechanical behavior and plastic deformation mechanism of high entropy alloy. For the sample with small thickness of amorphous phase, the plastic deformation is dominated by dislocation slip and phase transformation of face-centered-cubic structure to hexagonal-close-packed structure. Especially, the deformation twins and Lomer-Cottrell locks are observed in the sample with amorphous layer spacing of 1 nm. When the thickness of the amorphous layer is moderate, the plastic deformation of the dual-phase high-entropy alloy is realized mainly through the dislocation slip, phase transformation of face-centered-cubic structure to hexagonal-close-packed structure in crystalline part and shear band multiplication in amorphous part. If the amorphous layer spacing is larger, the plastic deformation of the high-entropy alloy is dominated by the formation of uniform shear bands in the amorphous phase. In addition, the amorphous phase in the dual-phase high-entropy alloy structure can stabilize the crystalline grains. The results of this study can provide a guidance for designing and preparing high entropy alloy with high performance.
      通信作者: 邓琼, dengqiong24@nwpu.edu.cn ; 宋海洋, hysong@xsyu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12072286)和陕西省自然科学基金 (批准号: 2021JZ-53)资助的课题.
      Corresponding author: Deng Qiong, dengqiong24@nwpu.edu.cn ; Song Hai-Yang, hysong@xsyu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12072286) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2021JZ-53).
    [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    王浩玉, 农智升, 王继杰, 朱景川 2019 物理学报 68 036101Google Scholar

    Wang H Y, Nong Z S, Wang J J, Zhu J C 2019 Acta Phys. Sin. 68 036101Google Scholar

    [3]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [4]

    Zhang W, Ma Z, Li C, Guo C, Liu D, Zhao H, Ren L 2022 J. Mater. Sci. Technol. 114 102Google Scholar

    [5]

    Zhang X, Divinski S V, Grabowski B 2022 Acta Mater. 227 117677Google Scholar

    [6]

    张勇, 陈明彪, 杨潇 2020 先进高熵合金技术 (北京: 化学工业出版社) 第76—123页

    Zhang Y, Chen M B, Yang X 2020 Advanced High Entropy Alloy Technology (Beijing: Chemical Industry Press) pp76–123 (in Chinese)

    [7]

    李建国, 黄瑞瑞, 张倩, 李晓雁 2020 力学学报 52 42Google Scholar

    Li J G, Huang R R, Zhang Q, Li X Y 2020 Chin. J. Theor. App. Mech. 52 42Google Scholar

    [8]

    Ye Y F, Wang Q, Lu J, Liu C T, Yang Y 2016 Mater. Today 19 349Google Scholar

    [9]

    黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程 2021 物理学报 70 106201Google Scholar

    Huang W J, Qiao J W, Chen S H, Wang X J, Wu Y C 2021 Acta Phys. Sin. 70 106201Google Scholar

    [10]

    Wu G, Balachandran S, Gault B, Xia W, Liu C, Rao Z, We Y, Liu S, Lu J, Herbig M, Lu W, Dehm G, Li Z, Raabe D 2020 Adv. Mater. 32 2002619Google Scholar

    [11]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153Google Scholar

    [12]

    Huang H L, Wu Y, He J Y, Wang H, Liu X, An K, Wu W, Lu Z 2017 Adv. Mater. 29 1701678Google Scholar

    [13]

    Chen L B, Wei R, Tang K, Zhang J, Jiang F, He L, Sun J 2018 Mater. Sci. Eng., A 716 150Google Scholar

    [14]

    Yasuda H Y, Miyamoto H, Cho K, Nagase T 2017 Mater. Lett. 199 120Google Scholar

    [15]

    Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T, Lu Z 2018 Nature 563 546Google Scholar

    [16]

    Sha Z D, Teng Y, Poh L H, Pei Q X, Xing G C, Gao H J 2019 Acta Mater. 169 147Google Scholar

    [17]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [18]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [19]

    吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平 2017 物理学报 66 176111Google Scholar

    Wu Y, Song W L, Zhou J, Cao D, Wang H, Liu X J, Lü Z P 2017 Acta Phys. Sin. 66 176111Google Scholar

    [20]

    Wang Y, Li J, Hamza A V, Barbee T W 2007 Proc. Natl. Acad. Sci. U. S. A. 104 11155Google Scholar

    [21]

    Xiao L L, Zheng Z Q, Guo S W, Huang P, Wang F 2020 Mater. Des. 194 108895Google Scholar

    [22]

    Xiao L, Zheng Z, Huang P, Wang F 2022 Scr. Mater. 210 114454Google Scholar

    [23]

    Jiang L, Bai Z T, Powers M, Fan Y, Zhang W, George E P, Misra A 2022 Mater. Sci. Eng., A 848 143144Google Scholar

    [24]

    Li J, Chen H, Feng H, Fang Q, Liu Y, Liu F, Wu H, Liaw P K 2020 J. Mater. Sci. Technol. 54 14Google Scholar

    [25]

    Zhou X Y, Wu H H, Zhu J H, Li B, Wu Y 2021 Compos. Commun. 24 100658Google Scholar

    [26]

    吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉 2018 金属学报 54 1553Google Scholar

    Lü Z P, Lei Z F, Huang H L, Liu S F, Zhang F, Duan D B, Cao P P, Wu Y, Liu X J, Wang H 2018 Acta Metall. Sin. 54 1553Google Scholar

    [27]

    陈晶晶, 邱小林, 李柯, 周丹, 袁军军 2022 物理学报 71 199601Google Scholar

    Chen J J, Qiu X L, Li K, Zhou D, Yuan J J 2022 Acta Phys. Sin. 71 199601Google Scholar

    [28]

    申天展, 宋海洋, 安敏荣 2021 物理学报 70 186201Google Scholar

    Shen T Z, Song H Y, An M R 2021 Acta Phys. Sin. 70 186201Google Scholar

    [29]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [30]

    Cao A J, Wei Y G 2007 J. Appl. Phys. 102 083511Google Scholar

    [31]

    Yamakov V, Wolf D, Salazar M, Phillpot S R, Gleiter H 2001 Acta Mater. 49 2713Google Scholar

    [32]

    Su M J, Deng Q, An M R, Liu L T, Chen L Y 2021 J. Alloys Compd. 868 159282Google Scholar

    [33]

    Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 NPJ Comput. Mater. 4 1Google Scholar

    [34]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [35]

    Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [36]

    Li J, Fang Q H, Liu B, Liu Y 2018 Acta Mater. 147 35Google Scholar

    [37]

    Sha Z D, Wong W H, Pei Q X, Branicio P S, Liu Z S, Wang T J, Guo T F, Gao H J 2017 J. Mech. Phys. Solids 104 84Google Scholar

    [38]

    Song H Y, Li S, An M R, Deng Q, Li Y L 2018 Comput. Mater. Sci. 150 42Google Scholar

    [39]

    Qi Y M, Zhao M, Feng M L 2021 J. Alloys Compd. 851 156923Google Scholar

    [40]

    Fang Q H, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast. 114 161Google Scholar

    [41]

    Xu X D, Liu P, Tang Z, Hirata A, Song S X, Nieh T G, Liaw P K, Liu C T, Chen M W 2018 Acta Mater. 144 107Google Scholar

    [42]

    Jiang K, Ren T F, Shan G B, Ye T, Chen L Y, Wang C X, Zhao F, Li J G, Suo T 2020 Mater. Sci. Eng., A 797 140125Google Scholar

    [43]

    Chowdhury P, Canadinc D, Sehitoglu H 2017 Mater. Sci. Eng. R:Rep. 122 1Google Scholar

  • 图 1  CoCrFeNiMn晶体/非晶双相高熵合金模型 (a) 初始构型; (b) 经公共近邻分析得到的原子结构图

    Fig. 1.  Schematic of CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloy: (a) The initial configuration; (b) atomic configuration identified by the common neighbor analysis method.

    图 2  不同非晶相厚度的CoCrFeNiMn晶体/非晶双相高熵合金的拉伸力学性能 (a) 应力-应变曲线; (b) 杨氏模量; (c) 峰值应力和平均流动应力

    Fig. 2.  Tensile properties of dual-phase CoCrFeNiMn crystalline/amorphous high-entropy alloys with different amorphous layer spacing: (a) Stress-strain curves; (b) Young’s modulus; (c) peak stress and average flow stress.

    图 3  多晶CoCrFeNiMn高熵合金在不同拉伸应变时的原子结构演变图 (a) ε = 0.033; (b) ε = 0.045; (c) ε = 0.057; (d) ε = 0.089; (e) ε = 0.111; (f) ε = 0.200

    Fig. 3.  Atomic configuration evolutions of polycrystalline CoCrFeNiMn high-entropy alloy: (a) ε = 0.033; (b) ε = 0.045; (c) ε = 0.057; (d) ε = 0.089; (e) ε = 0.111; (f) ε = 0.200.

    图 4  不同非晶厚度的双相HEAs在不同拉伸应变时的原子结构演变图 (a) h = 1 nm; (b) h = 5 nm; (c) h = 11 nm. 图4(a1)中圆圈代表了位错发射点, 图4(a2)中圆圈代表孪晶, 图4(a3)中圆圈代表位错锁, 图4(b1)中圆圈代表剪切带的雏形

    Fig. 4.  Atomic configuration evolutions of the CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloys with different amorphous layer spacing: (a) h = 1 nm; (b) h = 5 nm; (c) h = 11 nm. The emission site of the dislocation, the deformation twin and the Lomer-Cottrell locks are depicted by the circles in Fig. 4(a1), Fig. 4(a2) and Fig. 4(a3), respectively. The circle in Fig. 4(b1) represents the embryo of the shear band.

    图 5  不同非晶厚度的双相HEAs在拉伸过程中的不同结构原子比例变化图, 其中(a) h = 1 nm, (b) h =5 nm, (c) h =11 nm; (d) FCC相转变为HCP相的原子分数

    Fig. 5.  Atomic fraction evolutions of different structures of the CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloys with different amorphous layer spacing: (a) h = 1 nm; (b) h = 5 nm; (c) h = 11 nm. (d) Atomic fraction evolution of FCC structure transformation to HCP structure with h = 1, 5 and 11 nm.

    图 6  不同非晶厚度的双相HEAs中剪切带的形成过程图 (a) h = 1 nm; (b) h = 5 nm; (c) h = 11 nm

    Fig. 6.  Formation process of the shear band in CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloys with different amorphous layer spacing: (a) h = 1 nm; (b) h = 5 nm; (c) h = 11 nm.

    图 7  晶体相中的变形机理细节图 (a) 形变孪晶细节图; (b) 图4(a3)中Lomer-Cottrell位错锁的放大图; (c) 实验中观察到的Shockley 部分位错相互作用形成Lomer-Cottrell位错锁[42]

    Fig. 7.  Details of the plastic deformation mechanism in crystalline structure: (a) Detail of the deformation twins; (b) zoomed up snapshot of the Lomer-Cottrell locks of Fig. 4(a3); (c) the Lomer-Cottrell lock formed by the reaction of two Shockley partial dislocations in the experiment[42].

    图 8  位错滑移辅助下的FCC-HCP转变机制图 (a) FCC结构示意图; (b) HCP结构示意图; (c) FCC→HCP相变示意图

    Fig. 8.  Schematic illustration of FCC-to-HCP transformation mechanism as assisted by dislocation glide: (a) Schematic illustration of FCC structure; (b) schematic illustration of HCP structure; (c) FCC-to-HCP transformation mechanism.

  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    王浩玉, 农智升, 王继杰, 朱景川 2019 物理学报 68 036101Google Scholar

    Wang H Y, Nong Z S, Wang J J, Zhu J C 2019 Acta Phys. Sin. 68 036101Google Scholar

    [3]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [4]

    Zhang W, Ma Z, Li C, Guo C, Liu D, Zhao H, Ren L 2022 J. Mater. Sci. Technol. 114 102Google Scholar

    [5]

    Zhang X, Divinski S V, Grabowski B 2022 Acta Mater. 227 117677Google Scholar

    [6]

    张勇, 陈明彪, 杨潇 2020 先进高熵合金技术 (北京: 化学工业出版社) 第76—123页

    Zhang Y, Chen M B, Yang X 2020 Advanced High Entropy Alloy Technology (Beijing: Chemical Industry Press) pp76–123 (in Chinese)

    [7]

    李建国, 黄瑞瑞, 张倩, 李晓雁 2020 力学学报 52 42Google Scholar

    Li J G, Huang R R, Zhang Q, Li X Y 2020 Chin. J. Theor. App. Mech. 52 42Google Scholar

    [8]

    Ye Y F, Wang Q, Lu J, Liu C T, Yang Y 2016 Mater. Today 19 349Google Scholar

    [9]

    黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程 2021 物理学报 70 106201Google Scholar

    Huang W J, Qiao J W, Chen S H, Wang X J, Wu Y C 2021 Acta Phys. Sin. 70 106201Google Scholar

    [10]

    Wu G, Balachandran S, Gault B, Xia W, Liu C, Rao Z, We Y, Liu S, Lu J, Herbig M, Lu W, Dehm G, Li Z, Raabe D 2020 Adv. Mater. 32 2002619Google Scholar

    [11]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153Google Scholar

    [12]

    Huang H L, Wu Y, He J Y, Wang H, Liu X, An K, Wu W, Lu Z 2017 Adv. Mater. 29 1701678Google Scholar

    [13]

    Chen L B, Wei R, Tang K, Zhang J, Jiang F, He L, Sun J 2018 Mater. Sci. Eng., A 716 150Google Scholar

    [14]

    Yasuda H Y, Miyamoto H, Cho K, Nagase T 2017 Mater. Lett. 199 120Google Scholar

    [15]

    Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T, Lu Z 2018 Nature 563 546Google Scholar

    [16]

    Sha Z D, Teng Y, Poh L H, Pei Q X, Xing G C, Gao H J 2019 Acta Mater. 169 147Google Scholar

    [17]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [18]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [19]

    吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平 2017 物理学报 66 176111Google Scholar

    Wu Y, Song W L, Zhou J, Cao D, Wang H, Liu X J, Lü Z P 2017 Acta Phys. Sin. 66 176111Google Scholar

    [20]

    Wang Y, Li J, Hamza A V, Barbee T W 2007 Proc. Natl. Acad. Sci. U. S. A. 104 11155Google Scholar

    [21]

    Xiao L L, Zheng Z Q, Guo S W, Huang P, Wang F 2020 Mater. Des. 194 108895Google Scholar

    [22]

    Xiao L, Zheng Z, Huang P, Wang F 2022 Scr. Mater. 210 114454Google Scholar

    [23]

    Jiang L, Bai Z T, Powers M, Fan Y, Zhang W, George E P, Misra A 2022 Mater. Sci. Eng., A 848 143144Google Scholar

    [24]

    Li J, Chen H, Feng H, Fang Q, Liu Y, Liu F, Wu H, Liaw P K 2020 J. Mater. Sci. Technol. 54 14Google Scholar

    [25]

    Zhou X Y, Wu H H, Zhu J H, Li B, Wu Y 2021 Compos. Commun. 24 100658Google Scholar

    [26]

    吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉 2018 金属学报 54 1553Google Scholar

    Lü Z P, Lei Z F, Huang H L, Liu S F, Zhang F, Duan D B, Cao P P, Wu Y, Liu X J, Wang H 2018 Acta Metall. Sin. 54 1553Google Scholar

    [27]

    陈晶晶, 邱小林, 李柯, 周丹, 袁军军 2022 物理学报 71 199601Google Scholar

    Chen J J, Qiu X L, Li K, Zhou D, Yuan J J 2022 Acta Phys. Sin. 71 199601Google Scholar

    [28]

    申天展, 宋海洋, 安敏荣 2021 物理学报 70 186201Google Scholar

    Shen T Z, Song H Y, An M R 2021 Acta Phys. Sin. 70 186201Google Scholar

    [29]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [30]

    Cao A J, Wei Y G 2007 J. Appl. Phys. 102 083511Google Scholar

    [31]

    Yamakov V, Wolf D, Salazar M, Phillpot S R, Gleiter H 2001 Acta Mater. 49 2713Google Scholar

    [32]

    Su M J, Deng Q, An M R, Liu L T, Chen L Y 2021 J. Alloys Compd. 868 159282Google Scholar

    [33]

    Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 NPJ Comput. Mater. 4 1Google Scholar

    [34]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [35]

    Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [36]

    Li J, Fang Q H, Liu B, Liu Y 2018 Acta Mater. 147 35Google Scholar

    [37]

    Sha Z D, Wong W H, Pei Q X, Branicio P S, Liu Z S, Wang T J, Guo T F, Gao H J 2017 J. Mech. Phys. Solids 104 84Google Scholar

    [38]

    Song H Y, Li S, An M R, Deng Q, Li Y L 2018 Comput. Mater. Sci. 150 42Google Scholar

    [39]

    Qi Y M, Zhao M, Feng M L 2021 J. Alloys Compd. 851 156923Google Scholar

    [40]

    Fang Q H, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast. 114 161Google Scholar

    [41]

    Xu X D, Liu P, Tang Z, Hirata A, Song S X, Nieh T G, Liaw P K, Liu C T, Chen M W 2018 Acta Mater. 144 107Google Scholar

    [42]

    Jiang K, Ren T F, Shan G B, Ye T, Chen L Y, Wang C X, Zhao F, Li J G, Suo T 2020 Mater. Sci. Eng., A 797 140125Google Scholar

    [43]

    Chowdhury P, Canadinc D, Sehitoglu H 2017 Mater. Sci. Eng. R:Rep. 122 1Google Scholar

  • [1] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟. 物理学报, 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [2] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [3] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟. 物理学报, 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [4] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [5] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究. 物理学报, 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [6] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [7] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究. 物理学报, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [8] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [9] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究. 物理学报, 2015, 64(11): 116201. doi: 10.7498/aps.64.116201
    [10] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟. 物理学报, 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [11] 谷卓, 班士良. 纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应. 物理学报, 2014, 63(10): 107301. doi: 10.7498/aps.63.107301
    [12] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [13] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究. 物理学报, 2012, 61(14): 146101. doi: 10.7498/aps.61.146101
    [14] 刘永利, 赵星, 张宗宁, 张林, 王绍青, 叶恒强. TiAl/Ti3Al体系剪切变形的分子动力学研究. 物理学报, 2009, 58(13): 246-S253. doi: 10.7498/aps.58.246
    [15] 张然, 何军, 彭增辉, 宣丽. 向列相液晶nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8)的旋转黏度及其奇偶效应的分子动力学模拟. 物理学报, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [16] 陈育祥, 谢国锋, 马颖, 周益春. BaTiO3晶体结构及弹性的分子动力学模拟. 物理学报, 2009, 58(6): 4085-4089. doi: 10.7498/aps.58.4085
    [17] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟. 物理学报, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [18] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [19] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [20] 艾树涛, 蔡元贞. 与相变潜热有关的铁电-顺电相界动力学及其尺寸效应. 物理学报, 2006, 55(7): 3721-3724. doi: 10.7498/aps.55.3721
计量
  • 文章访问数:  5298
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-09
  • 修回日期:  2022-08-17
  • 上网日期:  2022-12-01
  • 刊出日期:  2022-12-24

/

返回文章
返回