搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同取向B2结构FeAl合金纳米线弯曲行为的分子动力学模拟

韦昭召

引用本文:
Citation:

不同取向B2结构FeAl合金纳米线弯曲行为的分子动力学模拟

韦昭召

Molecular dynamics simulation of bending behavior of B2-FeAl alloy nanowires with different crystallographic orientations

Wei Zhaozhao
PDF
导出引用
  • 金属纳米线的弯曲力学性能直接决定了微纳器件的可靠性和使用寿命。厘清纳米线在弯曲载荷作用下的力学响应特征和形变微观机制,对设计和制造高性能微纳器件具有十分重要的理论意义和巨大的工程价值。本文采用分子动力学模拟方法对不同取向B2结构FeAl合金纳米线的弯曲行为展开研究,并同时考虑纳米线尺寸和横截面形状的影响。结果表明,在本文考虑的尺寸范围内,FeAl合金纳米线弯曲塑性变形的微观机制不随纳米线尺寸及横截面形状的变化而改变,而只取决于纳米线轴向的晶体学取向。其中,<111>和<110>取向纳米线的屈服均源于位错形核,但<111>取向纳米线在屈服后随即发生脆性断裂,而<110>取向纳米线则在位错连续形核与滑移过程中产生稳定的塑性流动,从而表现出良好的塑性及延展性;与上述两种取向纳米线不同,<001>取向纳米线的弯曲形变机制以应力诱发B2→L10相变为主导,同样表现出良好的弯曲塑性,且具有较<110>取向纳米线更高的断裂应变。FeAl合金纳米线弯曲行为的晶体学取向依赖性可借助Schmid因子得到解释。此外,塑性弯曲的<110>和<001>取向纳米线在卸载过程中可回复至初始形状,特别地,<001>取向纳米线的弯曲塑性变形可完全回复,表现出超弹性特征。本文从原子尺度阐明B2结构FeAl合金纳米线的弯曲形变行为及其关键影响因素,对基于金属纳米线的柔性微纳器件设计和性能优化具有重要指导意义。
    In nanosystems, the metallic nanowires are subjected to significant and cyclic bending deformation upon integration into stretchable and flexible nanoelectronic devices. The reliability and service life of these nanodevices depend fundamentally on the bending mechanical properties of the metallic nanowires that serve as the critical components. A deep understanding of the deformation behavior of the metallic nanowires under bending is not only essential but also imperative for design and manufacture of high-performance nanodevices. To explore the mechanism underlying the bending plasticity of the metallic nanowire, we have conducted a study on the bending deformation of B2-FeAl alloy nanowires with various crystallographic orientations, sizes and cross-sectional shapes by using molecular dynamics simulation. Our results show that the bending behavior of the B2-FeAl alloy nanowires is independent of the size and cross-sectional shape of the nanowire, but it is highly sensitive to its axial orientation. Specifically, both <111>- and <110>-oriented nanowires yield by dislocation nucleation upon bending, in which the <111>-oriented nanowire fails by brittle fracture soon after yielding, while the <110>-oriented nanowire exhibits good ductility due to homogeneous plastic flow raised by continuous nucleation and steady motion of dislocations. In contrast to the aforementioned two nanowires, the bending plasticity of the <001>-oriented nanowire is mediated by stress-induced transformation from B2 to L10 phases, which leads to excellent ductility and higher fracture strain. The orientation dependence of bending deformation can be understood by considering the Schmid factor. Moreover, the plastically bent nanowires with <110> and <001> orientations are able to recover to their original shape upon unloading, particularly, the plastic deformation in the <001>-oriented nanowire is recoverable completely via reverse transformation from L10 to B2 structures, exhibiting superelasticity. This work elucidates the deformation mechanism of the B2-FeAl alloy nanowire subjected to bending load, which provides a crucial insight for the design and optimization of flexible and stretchable nanodevices based on metallic nanowires.
  • [1]

    Wu Y, Xiang J, Yang C, Lu W, Lieber C M 2004Nature 43061

    [2]

    Foss C A, Hornyak G L, Stockert J A, Martin C R 1992J. Phys. Chem. 96 7497

    [3]

    Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Ko S H 2012Adv. Mater. 24 3326

    [4]

    Kondo Y, Takayanagi K 1997Phys. Rev. Lett. 79 3455

    [5]

    Huo Z, Tsung C kuang, Huang W, Zhang X, Yang P 2008Nano Lett. 8 2041

    [6]

    Marszalek P E, Greenleaf W J, Li H, Oberhauser A F, Fernandez J M 2000Proc. Natl. Acad. Sci. U. S. A. 97 6282

    [7]

    Wang J, Zeng Z, Weinberger C R, Zhang Z, Zhu T, Mao S X 2015Nat. Mater. 14 594

    [8]

    Yue Y, Liu P, Deng Q, Ma E, Zhang Z, Han X 2012Nano Lett. 12 4045

    [9]

    Seo J H, Yoo Y, Park N Y, Yoon S W, Lee H, Han S, Lee S W, Seong T Y, Lee S C, Lee K B, Cha P R, Park H S, Kim B, Ahn J P 2011Nano Lett. 11 3499

    [10]

    Cao G, Wang J, Du K, Wang X, Li J, Zhang Z, Mao S X 2018Adv. Funct. Mater. 28 1805258

    [11]

    Hagen A B, Snartland B D, Thaulow C. 2017 Acta Mater. 129 398

    [12]

    Wang Q, Wang J, Li J, Zhang Z, Mao S X 2018 Sci. Adv. 4 1

    [13]

    Wu B, Heidelberg A, Boland J J. 2005Nat. Mater.4 525

    [14]

    Hu T, Ma K, Topping T D, Jiang L, Zhang D, Mukherjee A K, Schoenung J M, Lavernia E J 2016Scr. Mater.113 35

    [15]

    Wei S, Wang Q, Wei H, Wang J 2019Mater. Res. Lett. 7 210

    [16]

    Sun S, Li D, Yang C, Fu L, Kong D, Lu Y, Guo Y, Liu D, Guan P, Zhang Z, Chen J, Ming W, Wang L, Han X 2022Phys. Rev. Lett. 128 15701

    [17]

    Olsson P A T, Melin S, Persson C. 2007Phys. Rev. B 76 1

    [18]

    McDowell M T, Leach A M, Gall K. 2008Model. Simul. Mater. Sci. Eng. 16 045003

    [19]

    Zhu W, Wang H, Yang W. 2012Acta Mater. 60 7112

    [20]

    Deb Nath S K 2014Comput. Mater. Sci. 87 138

    [21]

    Zhang S B. 2014Comput. Mater. Sci. 95 53

    [22]

    Nöhring W G, Möller J J, Xie Z, Bitzek E 2016Extrem. Mech. Lett. 8 140

    [23]

    Zhan H F, Gu Y T. 2012J. Appl. Phys. 111 084305

    [24]

    Yang Y, Li S, Ding X, Sun J, Salje E K H 2016Adv. Funct. Mater. 26 760

    [25]

    Yang Y, Li S, Ding X, Sun J 2021Comput. Mater. Sci. 188 110128

    [26]

    Mendelev M I, Srolovitz D J, Ackland G J, Han S 2005J. Mater. Res. 20 208

    [27]

    Yan J X, Zhang Z J, Li K Q, Xia Z Y, Yang J B, Zhang Z F 2020J. Alloys Compd. 815 152362

    [28]

    Dong S, Liu X Y, Zhou C 2021J. Mater. Sci. 56 17080

    [29]

    Timoshenko S P, Gere J M 1961Theory of Elastic Stability (New York: McGraw-Hill) p1

    [30]

    Plimpton S. 1995J. Comput. Phys. 117 1

    [31]

    Stukowski A. 2010Model. Simul.Mater.Sci. Eng. 18 015012

    [32]

    Faken D, Jonsson H. 1994Comput. Mater. Sci. 2 279

    [33]

    Stukowski A, Albe K. 2010Model. Simul.Mater.Sci. Eng. 18 025016

    [34]

    Shimizu F, Ogata S, Li J. 2007Mater. Trans. 48 2923

    [35]

    Chen Y, Yao Z J, Zhang P Z, Wei D B, Luo X X, Han P D 2014Rare. Metal. Mat. Eng. 43 2112(in Chinese) [陈煜, 姚正军, 张平则, 魏东博, 罗西希, 韩培德2014稀有金属材料与工程43 2112]

    [36]

    Wang Z, Shi X, Yang X S, He W, Shi S Q, Ma X 2021J. Mater. Sci. 56 2275

    [37]

    Horton J A, Ohr S M. 1982J. Mater. Sci. 17 3140

    [38]

    Colorado H A, Navarro A, Prikhodko S V., Yang J M, Ghoniem N, Gupta V 2013J. Appl. Phys. 114 233510

    [39]

    Hwang B, Kim T, Han S M. 2016Extrem. Mech. Lett. 8 266

    [40]

    Nye J F. 1953Acta Metall. 1 153

    [41]

    Ashby M F. 1969Philos. Mag. 21 37

    [42]

    Greer J R, Nix W D. 2006Phys. Rev. B. 73 1

    [43]

    Shan Z W, Mishra R K, Syed Asif S A, Warren O L, Minor A M 2008Nat. Mater. 7 115

    [44]

    Norfleet D M, Dimiduk D M, Polasik S J, Uchic M D, Mills M J 2008Acta Mater. 56 2988

    [45]

    Lee S W, Han S M, Nix W D. 2009Acta Mater. 57 4404

    [46]

    Rodriguez-Nieva J F, Ruestes C J, Tang Y, Bringa E M 2014Acta Mater. 80 67

    [47]

    Santhapuram R R, Spearot D E, Nair A K. 2020J. Mater. Sci. 55 16990

    [48]

    Yuan Y K, Chen Q, Gao T H, Liang Y C, Xie Q, Tian Z A, Zheng Q, Lu F 2023Acta Phys. Sin. 72 1(in Chinese) [袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞2023物理学报72 1]

    [49]

    Saitoh K ichi, Liu W K. 2009Comput. Mater. Sci. 46 531

    [50]

    Zhang Z, Ding X, Sun J, Suzuki T, Lookman T, Otsuka K, Ren X 2013Phys. Rev. Lett. 111 1

    [51]

    Mirzaeifar R, Gall K, Zhu T, Yavari A, Desroches R 2014J. Appl. Phys. 115 1

    [52]

    Morrison K R, Cherukara M J, Kim H, Strachan A 2015Acta Mater. 95 37

    [53]

    Ahadi A, Sun Q 2013Appl. Phys. Lett. 103 021902

    [54]

    Ahadi A, Sun Q 2014Acta Mater. 76 186

  • [1] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, doi: 10.7498/aps.71.20212318
    [2] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210094
    [3] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20202239
    [4] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究. 物理学报, doi: 10.7498/aps.70.20201591
    [5] 何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平. 基于三轴X射线衍射方法的n-GaN位错密度的测试条件分析. 物理学报, doi: 10.7498/aps.66.216102
    [6] 何菊生, 张萌, 潘华清, 邹继军, 齐维靖, 李平. 基于变温霍尔效应方法的一类n-GaN位错密度的测量. 物理学报, doi: 10.7498/aps.66.067201
    [7] 何菊生, 张萌, 潘华清, 齐维靖, 李平. 一种测量纤锌矿n-GaN位错密度的新方法. 物理学报, doi: 10.7498/aps.65.167201
    [8] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.63.234601
    [9] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.46401
    [10] 颜笑, 辛子华, 张娇娇. 碳硅二炔结构及性质分子动力学模拟研究. 物理学报, doi: 10.7498/aps.62.238101
    [11] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.62.186202
    [12] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, doi: 10.7498/aps.62.036101
    [13] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.61.130510
    [14] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究. 物理学报, doi: 10.7498/aps.60.046104
    [15] 刘红, 王西涛, 陈冷. 含Nb微合金钢应变诱导析出的模拟. 物理学报, doi: 10.7498/aps.58.151
    [16] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, doi: 10.7498/aps.57.5833
    [17] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, doi: 10.7498/aps.56.1009
    [18] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, doi: 10.7498/aps.55.2418
    [19] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, doi: 10.7498/aps.55.5455
    [20] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, doi: 10.7498/aps.54.4313
计量
  • 文章访问数:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-19

/

返回文章
返回