-
采用大规模分子动力学方法研究了刚性球型探头与具有不同纳米沟槽基体表面的黏着接触过程, 探讨了表面沟槽结构对载荷-位移曲线、接触引力和拉离力以及材料转移的影响规律. 研究结果表明: 在相同的压入深度下, 与原子级光滑表面的黏着接触过程相比, 刚性探头与具有纳米沟槽结构基体表面的接触压力较小, 接触加载过程中的引力作用范围较大, 并伴随载荷的多次跳跃, 且接触引力和拉离力均有减小; 当沟槽深度相同时, 随着沟槽宽度的增大, 接触引力和拉离力逐渐减小, 当沟槽宽度逐渐接近探头与光滑表面的接触直径时, 接触引力和拉离力又逐渐增大, 趋于接近探头与光滑表面的接触过程; 当沟槽宽度相同时, 随着沟槽深度的增大, 接触引力相对减小, 拉离力变化不大.The adhesive contact processes between a rigid spherical tip and substrates with nanogrooves of different sizes have been investigated with a large-scale molecular dynamics simulation method. Influences of the surface grooves on the load-displacement curves, the attractive forces in the loading/unloading processes, and material transfer have been discussed. Results show that compared with the contact between a tip and a smooth surface, the attractive force range becomes larger in the loading process, accompanied by several jumps of the load, and the maximum attractive forces both in the loading and unloading processes are smaller. When the groove depths are the same, the maximum attractive forces in the loading and unloading processes decrease gradually with the increase of the groove width. However, when the groove width becomes close to the contact diameter between the tip and the smooth surface, the maximum attractive force would increase slowly, tending to be close to the case of smooth surface. When the groove width is kept the same, the maximum attractive force in the loading process decreases with the increase of the groove depth, while the maximum attractive force in the unloading process is almost unchanged.
-
Keywords:
- adhesive contact /
- molecular dynamics simulation /
- nanogrooves /
- pull-off force
[1] Wei Z, Zhao Y P 2004 Chin. Phys. 13 1320
[2] Xie G, Ding J, Liu S, Luo J 2009 Surf. Interf. Anal. 41 338
[3] Jacobs T D B, Ryan K E, Keating P L, Grierson D S, Lefever J A, Turner K T, Harrison J A, Carpick R W 2013 Tribol. Lett. 50 81
[4] Xie G, Ding J, Zheng B, Xue W 2009 Tribol. Int. 42 183
[5] Zhao Y P, Wang L S, Yu T X 2003 J. Adhesion Sci. Technol. 17 519
[6] Chen S H, Chen P J 2010 Chin. Phys. Lett. 27 108102
[7] Zou M, Wang H, Larson P R, Hobbs K L, Johnson M B, Awitor O K 2006 Tribol. Lett. 24 137
[8] Ramakrishna S N, Nalam P C, Clasohm L Y, Spencer N D 2013 Langmuir 29 175
[9] Ramakrishna S N, Clasohm L Y, Rao A, Spencer N D 2011 Langmuir 27 9972
[10] Pastewka L, Robbins M O 2014 Proc. Natl. Acad. Sci. USA 111 3298
[11] Hsu S, Ying C, Zhao F 2014 Friction 2 1
[12] Rapaport D C 1995 The Art of Molecular Dynamics Simulation (Cambridge: Cambridge University Press) pp10-82
[13] Watanabe T, Fujiwara H, Noguchi H, Hoshino T, Ohdomari I 1999 Jpn. J. Appl. Phys. 38 L366
[14] Chen R L, Luo J B, Guo D, Lu X C 2008 J. Appl. Phys. 104 104907
[15] Si L N, Guo D, Luo J B, Lu X C 2011 J. Appl. Phys. 109 084335
[16] Duan F L, Wang G J, Qiu H B 2012 Acta Phys. Sin. 61 016201 (in Chinese) [段芳莉, 王光建, 仇和兵 2012 物理学报 61 016201]
[17] Chen Y L, Helm C A, Israelachvili J N 1991 J. Phys. Chem. 95 10736
[18] Zhu P Z, Hu Y Z, Ma T B, Wang H 2011 Tribol. Lett. 41 41
[19] Ryan K E, Keating P L, Jacobs T D, Grierson D S, Turner K T, Carpick R W, Harrison J A 2014 Langmuir 30 2028
[20] Walsh P, Omeltchenko A, Kalia R K, Nakano A, Vashishta P, Saini S 2003 Appl. Phys. Lett. 82 118
[21] Duan F L, Wang G J, Qiu H B 2012 Acta Phys. Sin. 61 046801 (in Chinese) [段芳莉, 王光建, 仇和兵 2012 物理学报 61 046801]
[22] Duan F L, Luo J B, Wen S Z 2005 Chin. Sci. Bull. 50 1661
-
[1] Wei Z, Zhao Y P 2004 Chin. Phys. 13 1320
[2] Xie G, Ding J, Liu S, Luo J 2009 Surf. Interf. Anal. 41 338
[3] Jacobs T D B, Ryan K E, Keating P L, Grierson D S, Lefever J A, Turner K T, Harrison J A, Carpick R W 2013 Tribol. Lett. 50 81
[4] Xie G, Ding J, Zheng B, Xue W 2009 Tribol. Int. 42 183
[5] Zhao Y P, Wang L S, Yu T X 2003 J. Adhesion Sci. Technol. 17 519
[6] Chen S H, Chen P J 2010 Chin. Phys. Lett. 27 108102
[7] Zou M, Wang H, Larson P R, Hobbs K L, Johnson M B, Awitor O K 2006 Tribol. Lett. 24 137
[8] Ramakrishna S N, Nalam P C, Clasohm L Y, Spencer N D 2013 Langmuir 29 175
[9] Ramakrishna S N, Clasohm L Y, Rao A, Spencer N D 2011 Langmuir 27 9972
[10] Pastewka L, Robbins M O 2014 Proc. Natl. Acad. Sci. USA 111 3298
[11] Hsu S, Ying C, Zhao F 2014 Friction 2 1
[12] Rapaport D C 1995 The Art of Molecular Dynamics Simulation (Cambridge: Cambridge University Press) pp10-82
[13] Watanabe T, Fujiwara H, Noguchi H, Hoshino T, Ohdomari I 1999 Jpn. J. Appl. Phys. 38 L366
[14] Chen R L, Luo J B, Guo D, Lu X C 2008 J. Appl. Phys. 104 104907
[15] Si L N, Guo D, Luo J B, Lu X C 2011 J. Appl. Phys. 109 084335
[16] Duan F L, Wang G J, Qiu H B 2012 Acta Phys. Sin. 61 016201 (in Chinese) [段芳莉, 王光建, 仇和兵 2012 物理学报 61 016201]
[17] Chen Y L, Helm C A, Israelachvili J N 1991 J. Phys. Chem. 95 10736
[18] Zhu P Z, Hu Y Z, Ma T B, Wang H 2011 Tribol. Lett. 41 41
[19] Ryan K E, Keating P L, Jacobs T D, Grierson D S, Turner K T, Carpick R W, Harrison J A 2014 Langmuir 30 2028
[20] Walsh P, Omeltchenko A, Kalia R K, Nakano A, Vashishta P, Saini S 2003 Appl. Phys. Lett. 82 118
[21] Duan F L, Wang G J, Qiu H B 2012 Acta Phys. Sin. 61 046801 (in Chinese) [段芳莉, 王光建, 仇和兵 2012 物理学报 61 046801]
[22] Duan F L, Luo J B, Wen S Z 2005 Chin. Sci. Bull. 50 1661
计量
- 文章访问数: 6195
- PDF下载量: 366
- 被引次数: 0