搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超细Pt纳米线结构和熔化行为的分子动力学模拟研究

夏冬 王新强

引用本文:
Citation:

超细Pt纳米线结构和熔化行为的分子动力学模拟研究

夏冬, 王新强

Structures and melting behaviors of ultrathin platinum nanowires

Xia Dong, Wang Xin-Qiang
PDF
导出引用
  • 基于EAM原子嵌入势, 对临界尺寸下的自由Pt纳米线的奇异结构和熔化行为进行分子动力学模拟. 模拟结果显示, 超细Pt纳米线的熔点随径向尺寸和结构的不同而发生明显改变; 引入林德曼因子, 令其临界值为0.03, 以此得到对应熔点值大小与通过势能-温度变化曲线找出的一致, 又比较了纳米线各层粒子平均林德曼指数的大小, 对各层纳米结构的热稳定性进行定量标度; 综合分析发现螺旋结构纳米线的熔化从内核开始, 而多边形结构的纳米线的熔化从外壳层开始.
    The amorphous-like structures and melting behaviors of ultrathin platinum nanowires are studied by EAM potential by using empirical molecular-dynamic simulation and the dependence of nanowire melting temperature pm soze os pntaomed. When the Lindeman criterion is 0.03, we find that the melting temperature for Pt nanowires is well consistent with the result obtained from the potential energy. Through comparing the Lindemann indexes on each shell, the thermal stability is studied. The results indicate that melting of the cylindrical helical structures starts from the interior atoms and that of the bulklike rectangular structure starts from the surface. We also observe the positions of the atoms at different temperatures to obtain the atomic diffusion and mobility.
    [1]

    Koh S J A, Lee H P, Lu C, Cheng Q H 2005 Phys. Rev. B 72 085414/1

    [2]

    Zhou J, Jin C, Seol J H, Li X, Shi L 2005 Phys. Rev. B 87 133109/1

    [3]

    Li L, Zhang Y, Yang Y W, Huang X H, Li G H, Zhang L D 2005 Appl. Phys. Lett. 87 031912

    [4]

    Wen Y Y, Zhou F B, Liu R W 2001 Advances In Mechanics 2 47 (in Chinese) [文玉华, 周富倍, 刘日武 2001 力学进展 2 47]

    [5]

    Lieber C 2003 M. MRS Bull 28 486

    [6]

    Kondo Y, Takayanagi K 2000 Science 289 606

    [7]

    Wang B L 2001 M. S. Dissertation (Nanjing: Nanjing University) (in Chinese) [王保林 2001 金属纳米线奇异结构和物理性质的理论研究 硕士学位论文(南京: 南京大学)]

    [8]

    Erts D, Polyakov B, Dalyt B, Morries M A, Ellingboe S, Boland J, Holmes J D 2006 J. Phys. Chem. B 110 820

    [9]

    Zhong F X, Zong R L, Zhu Y F 2009 J. Nanosci. Nanotechnol. 9 2437

    [10]

    Zhang X Y, Zhang L D, Lei Y, Zhao L X, Mao Y Q 2001 J. Mater. Chem. 11 1732

    [11]

    Cai L T, Skulason H, Kushmerick J G, Pollack S K, Naciri J, Shashidhar R, Allara D L, Mallouk T E, Mayer T S 2004 J. Phys. Chem. B 108 2827

    [12]

    Chu S Z, Inoue S, Wada K, Kanke Y, Kurashima K J 2005 Electrochem. Soc. 42 152

    [13]

    Wu B, Heidelberg A, Boland J J 2005 Nat. Mater 4 525

    [14]

    Liu J, Duan J L, Toimil-Molares E, Karim S, Cornelius T W, Dobrev D, Yao H J, Sun Y M, Hou M D, Mo D, Wang Z G, Neumann R 2006 Nanotechnology 17 1922

    [15]

    Erts D, Polyakov B, Dalyt B, Morris M A, Ellingboe S, Boland J, Holmes J D 2006 J. Phys. Chem. B 110 820

    [16]

    Tan L K, Chong A S M, Tang X S E, Gao H 2007 J. Phys. Chem. C 111 4964

    [17]

    Sun S, Yang D, Zhang G, Sacher E, Dodelet J P 2007 Chem. Mater. 19 6376

    [18]

    Liu L, Lee W, Huang Z, Scholz R, Gosele U 2008 Nanotechnology 19 335604

    [19]

    Landman U, Luedtke W D, Burnham N A, Colton R J 1990 Science 248 454

    [20]

    Yanson A I, Yanson I K, van Ruitenbeek J M 2001 Phys. Rev. Lett. 87 216805

    [21]

    Diao J K, Gall K, Dunn M L 2004 J. Mech. Phys. Solids 52 1935

    [22]

    Li H, Pederiva F, Wang G H, Wang B L 2003 Chem. Phys. Lett. 94 381

    [23]

    Gulseren O, Ercolessi F, Tosatti E 1998 Phys. Rev. Lett. 80 3775

    [24]

    Kang J W, Seo J J, Hwang H J 2002 J. Phys.: Condens. Matter 14 2629

    [25]

    Wang B L, Yin S Y, Wang G H, Buldum A, Zhao J J 2001 Phys. Rev. Lett. 86 2046

    [26]

    Wang B L, Wang G H, Zhao J J 2002 Phys. Rev. B 65 235406

    [27]

    Qi Y, Cagin T, Johnson W L, Goddard W A 2001 J. Chem. Phys 115 385

    [28]

    Wang X W, Fei G T, Zheng K, Jin Z, Zhang L D 2006 Appl. Phys. Lett. 88 173114

    [29]

    Hui L, Wang B L, Wang J L, Wang G H 2004 Chem. Phys. Lett. 20 399

    [30]

    Finnis M W, Sinclair J E 1984 Philosophic Magazine A 50 0045

    [31]

    Ackland G J, Vitek V 1990 J. Phys. Rev. B 41 223

    [32]

    Ackland G J, Tichy G, Vitek V 1987 J. Philosophic Magazine A 56 735

    [33]

    Wang B L, Wang G H, Chen X S 2003 Phys. Rev. B 67 193403

    [34]

    Zhang H Y, Gu X, Zhang X H, Ye X, Gong X G 2004 Phys. Lett. A 331 332

    [35]

    Wen Y H, Zhang Y, Zheng J C, Zhu Z Z 2009 J. Phys. Chem. C 113 20611

    [36]

    Zeng Q M, Zhou N G, Zhou T 2008 Chinese Ceramics 44 23 (in Chinese) [曾庆明, 周耐根, 周浪 2008 中国陶瓷 44 23]

    [37]

    Bilalbegovic G 2000 Solid State Commun. 115 73

    [38]

    Pawlow P Z 1909 Phys. Chem. Stoechiom. Verwandtschaftsl 65 545

    [39]

    Peng C X 2009 M. S. Dissertation (Jinan: Jinan University) (in Chinese) [彭传校 2009 镍纳米线的结构及其力学性能 硕士学位论文 (济南: 山东大学)]

    [40]

    Cheng D M 2006 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [程登木 2006 Ni3Al 纳米材料热力学性质的分子动力学模拟 硕士学位论文 (成都: 电子科技大学)]

    [41]

    Wang B L, Zhao J J, Wang G H 2005 Progress In Physics 25 0317 (in Chinese) [王保林, 赵纪军, 王广厚 2005 物理学进展 25 0317]

    [42]

    Stillinger F H, Wwber T A 1980 Phys. Rev. B 22 3790

    [43]

    Zhou Y Q, Karplus M, Ball K D, Berry R S 2002 J. Chem. Phys. 116 2323

  • [1]

    Koh S J A, Lee H P, Lu C, Cheng Q H 2005 Phys. Rev. B 72 085414/1

    [2]

    Zhou J, Jin C, Seol J H, Li X, Shi L 2005 Phys. Rev. B 87 133109/1

    [3]

    Li L, Zhang Y, Yang Y W, Huang X H, Li G H, Zhang L D 2005 Appl. Phys. Lett. 87 031912

    [4]

    Wen Y Y, Zhou F B, Liu R W 2001 Advances In Mechanics 2 47 (in Chinese) [文玉华, 周富倍, 刘日武 2001 力学进展 2 47]

    [5]

    Lieber C 2003 M. MRS Bull 28 486

    [6]

    Kondo Y, Takayanagi K 2000 Science 289 606

    [7]

    Wang B L 2001 M. S. Dissertation (Nanjing: Nanjing University) (in Chinese) [王保林 2001 金属纳米线奇异结构和物理性质的理论研究 硕士学位论文(南京: 南京大学)]

    [8]

    Erts D, Polyakov B, Dalyt B, Morries M A, Ellingboe S, Boland J, Holmes J D 2006 J. Phys. Chem. B 110 820

    [9]

    Zhong F X, Zong R L, Zhu Y F 2009 J. Nanosci. Nanotechnol. 9 2437

    [10]

    Zhang X Y, Zhang L D, Lei Y, Zhao L X, Mao Y Q 2001 J. Mater. Chem. 11 1732

    [11]

    Cai L T, Skulason H, Kushmerick J G, Pollack S K, Naciri J, Shashidhar R, Allara D L, Mallouk T E, Mayer T S 2004 J. Phys. Chem. B 108 2827

    [12]

    Chu S Z, Inoue S, Wada K, Kanke Y, Kurashima K J 2005 Electrochem. Soc. 42 152

    [13]

    Wu B, Heidelberg A, Boland J J 2005 Nat. Mater 4 525

    [14]

    Liu J, Duan J L, Toimil-Molares E, Karim S, Cornelius T W, Dobrev D, Yao H J, Sun Y M, Hou M D, Mo D, Wang Z G, Neumann R 2006 Nanotechnology 17 1922

    [15]

    Erts D, Polyakov B, Dalyt B, Morris M A, Ellingboe S, Boland J, Holmes J D 2006 J. Phys. Chem. B 110 820

    [16]

    Tan L K, Chong A S M, Tang X S E, Gao H 2007 J. Phys. Chem. C 111 4964

    [17]

    Sun S, Yang D, Zhang G, Sacher E, Dodelet J P 2007 Chem. Mater. 19 6376

    [18]

    Liu L, Lee W, Huang Z, Scholz R, Gosele U 2008 Nanotechnology 19 335604

    [19]

    Landman U, Luedtke W D, Burnham N A, Colton R J 1990 Science 248 454

    [20]

    Yanson A I, Yanson I K, van Ruitenbeek J M 2001 Phys. Rev. Lett. 87 216805

    [21]

    Diao J K, Gall K, Dunn M L 2004 J. Mech. Phys. Solids 52 1935

    [22]

    Li H, Pederiva F, Wang G H, Wang B L 2003 Chem. Phys. Lett. 94 381

    [23]

    Gulseren O, Ercolessi F, Tosatti E 1998 Phys. Rev. Lett. 80 3775

    [24]

    Kang J W, Seo J J, Hwang H J 2002 J. Phys.: Condens. Matter 14 2629

    [25]

    Wang B L, Yin S Y, Wang G H, Buldum A, Zhao J J 2001 Phys. Rev. Lett. 86 2046

    [26]

    Wang B L, Wang G H, Zhao J J 2002 Phys. Rev. B 65 235406

    [27]

    Qi Y, Cagin T, Johnson W L, Goddard W A 2001 J. Chem. Phys 115 385

    [28]

    Wang X W, Fei G T, Zheng K, Jin Z, Zhang L D 2006 Appl. Phys. Lett. 88 173114

    [29]

    Hui L, Wang B L, Wang J L, Wang G H 2004 Chem. Phys. Lett. 20 399

    [30]

    Finnis M W, Sinclair J E 1984 Philosophic Magazine A 50 0045

    [31]

    Ackland G J, Vitek V 1990 J. Phys. Rev. B 41 223

    [32]

    Ackland G J, Tichy G, Vitek V 1987 J. Philosophic Magazine A 56 735

    [33]

    Wang B L, Wang G H, Chen X S 2003 Phys. Rev. B 67 193403

    [34]

    Zhang H Y, Gu X, Zhang X H, Ye X, Gong X G 2004 Phys. Lett. A 331 332

    [35]

    Wen Y H, Zhang Y, Zheng J C, Zhu Z Z 2009 J. Phys. Chem. C 113 20611

    [36]

    Zeng Q M, Zhou N G, Zhou T 2008 Chinese Ceramics 44 23 (in Chinese) [曾庆明, 周耐根, 周浪 2008 中国陶瓷 44 23]

    [37]

    Bilalbegovic G 2000 Solid State Commun. 115 73

    [38]

    Pawlow P Z 1909 Phys. Chem. Stoechiom. Verwandtschaftsl 65 545

    [39]

    Peng C X 2009 M. S. Dissertation (Jinan: Jinan University) (in Chinese) [彭传校 2009 镍纳米线的结构及其力学性能 硕士学位论文 (济南: 山东大学)]

    [40]

    Cheng D M 2006 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [程登木 2006 Ni3Al 纳米材料热力学性质的分子动力学模拟 硕士学位论文 (成都: 电子科技大学)]

    [41]

    Wang B L, Zhao J J, Wang G H 2005 Progress In Physics 25 0317 (in Chinese) [王保林, 赵纪军, 王广厚 2005 物理学进展 25 0317]

    [42]

    Stillinger F H, Wwber T A 1980 Phys. Rev. B 22 3790

    [43]

    Zhou Y Q, Karplus M, Ball K D, Berry R S 2002 J. Chem. Phys. 116 2323

  • [1] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [2] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [3] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [4] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [5] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [6] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究. 物理学报, 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [7] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究. 物理学报, 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [8] 张兆慧, 李海鹏, 韩奎. 纳米摩擦中极性有机分子超薄膜的结构、对称性及能量机理. 物理学报, 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [9] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [10] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [11] 颜笑, 辛子华, 张娇娇. 碳硅二炔结构及性质分子动力学模拟研究. 物理学报, 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [12] 徐志欣, 李家云, 孙民华, 姚秀伟. 非晶纳米Ni500团簇等温晶化过程中的结构与动力学研究. 物理学报, 2013, 62(18): 186101. doi: 10.7498/aps.62.186101
    [13] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响. 物理学报, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [14] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [15] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟. 物理学报, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [16] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [17] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [18] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [19] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [20] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
计量
  • 文章访问数:  8202
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-12
  • 修回日期:  2011-11-28
  • 刊出日期:  2012-07-05

/

返回文章
返回