搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究

孙伟峰 王暄

引用本文:
Citation:

聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究

孙伟峰, 王暄

Molecular dynamics simulation study of polyimide/copper-nanoparticle composites

Sun Wei-Feng, Wang Xuan
PDF
导出引用
  • 通过分子动力学模拟对聚酰亚胺/铜纳米颗粒复合物的形态结构、 热力学性质、力学特性进行计算, 分析其随模拟温度和纳米颗粒尺寸的变化规律. 模拟结果表明, 聚酰亚胺/铜纳米颗粒复合物为各向同性的无定形态结构, 铜纳米颗粒与聚酰亚胺基体之间通过较强的范德华作用结合在一起使结构更加稳定, 铜纳米颗粒表面多个原子层呈现无定形状态, 在铜颗粒和聚酰亚胺基体之间形成界面层, 界面区域随颗粒尺寸和温度的增加分别减小和增加. 聚酰亚胺/铜纳米颗粒复合物的等容热容随着颗粒尺寸增大而明显增高, 随温度变化比聚酰亚胺体系更为缓慢, 在较低温度下较小颗粒尺寸复合物的热容比聚酰亚胺体系更低. 聚酰亚胺/铜纳米颗粒复合物的热压力系数随颗粒尺寸增加而显著增大, 比聚酰亚胺体系的热压力系数更小, 且随温度升高而减小的程度要小得多. 聚酰亚胺/铜纳米颗粒复合物的热力学性质表现出明显的尺度效应, 温度稳定性明显高于聚酰亚胺体系. 聚酰亚胺/铜纳米颗粒复合物的力学特性表现出各向同性材料的弹性常数张量, 具有比聚酰亚胺体系更低的杨氏模量和泊松比, 随温度升高分别减小和增大, 与聚酰亚胺体系随温度的变化趋势相反, 且杨氏模量的温度稳定性显著提高, 同时泊松比随纳米颗粒尺寸增大而减小, 具有明显的尺度效应. 加入铜纳米颗粒形成复合物可获得与聚酰亚胺体系显著不同的力学新特性.
    Molecular dynamics simulations of polyimide/copper-nanoparticle composites are implemented to calculate the morphological structures, thermodynamic and mechanical properties, and to investigate their relationships with the nanoparticle dimension and simulation temperature. The results demonstrate that polyimide/copper-nanoparticle composites are of isotropic amorphous structures, in which the copper nanoparticles combine with polyimide matrix due to van der Waals effect and multi-layers of atoms on nanoparticle surface change into amorphous configurations, forming interface layers between them. The interface regions shrink and expand respectively with increased nanoparticle dimension and temperature. The polyimide/copper-nanoparticle composites exhibit the explicit increase of isometric heat capacity with larger nanoparticle dimension in moderated temperature dependence, resulting in lower heat capacities at relatively low temperature for nanocomposites with relatively small nanoparticle size, compared with polyimide system. The thermal pressure coefficients of polyimide/copper-nanoparticle composites are distinctly higher than those of polyimide system, and increase substantially with enlarged nanoparticle dimension and reduce slightly with elevated temperature. The thermodynamic properties of polyimide/copper-nanoparticle composites manifest obvious scale-effect and distinctly higher temperature stability than polyimide system. The mechanical properties of polyimide/copper-nanoparticle composites represent isotropic elastic constant tensors with distinctly lower Young modulus and Poisson ratio than those of polyimide system, which decrease and increase respectively with increasing simulation temperature, exactly contrary to polyimide system and with substantially higher temperature stability of Young modulus. The composites with larger nanoparticle dimension exhibit considerably higher Poisson ratio with slight change of Young modulus, indicating the remarkably different mechanical properties of new nanocomposites with Cu nanoparticle filler.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB723308)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB723308).
    [1]

    Stevens G C 2005 J. Phys. D 38 174

    [2]

    Borjanovic V, Bistricic L, Mikac L, McGuire G E, Zamboni I, Jaksic M, Shenderova O 2012 J. Vac. Sci. Technol. B 30 041803

    [3]

    Tanaka M, Karttunen M, Pelto J, Salovaara P, Munter T, Honkanen M, Auletta T, Kannus K 2008 Trans. IEEE DEI 15 1224

    [4]

    Raetzke S, Kindersberger J 2006 IEEJ Trans. Fundam. Mater. 126 1044

    [5]

    Smith R C, Liang C, Landry M, Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 187

    [6]

    Fukushima K, Takahashi H, Takezawa Y, Kawahira T, Itoh M, Kanai J 2006 IEEJ Trans. Fundam. Mater. 126 1167

    [7]

    Tanka T, Ohki Y, Ochi M, Harada M, Imai T 2008 Trans. IEEE DEI 15 81

    [8]

    Lewis T J 2004 IEEE Int. Conf. Solid Dielectr. 2 792

    [9]

    Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 1

    [10]

    Nelson J K, Hu Y 2005 J. Phys. D 38 213

    [11]

    Tewari A, Gokhale A M 2005 Mater. Sci. Eng. A 396 22

    [12]

    Dissado L A, Fothergill J C 2004 Trans. IEEE DEI 11 737

    [13]

    Tanaka T, Montannari G C, Mlhaupt R 2004 Trans. IEEE DEI 11 763

    [14]

    Starr F, Schroder T, Glotzer S 2001 Phys. Rev. E 64 021802

    [15]

    Smith G, Bedrov D, Li L, Byutner O 2002 J. Chem. Phys. 117 9478

    [16]

    Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348

    [17]

    Zeng Q H, Yu A B, Lu G Q 2008 Prog. Polym. Sci. 33 191

    [18]

    Rigby D, Roe R J 1987 J. Chem. Phys. 87 7285

    [19]

    Rigby D, Roe R J 1988 J. Chem. Phys. 89 5280

    [20]

    Wilson E B, Decius J C, Cross P C 1980 Molecular Vibrations (New York: Dover)

    [21]

    Nosé S 1991 Prog. Theor. Phys. Suppl. 103 1

  • [1]

    Stevens G C 2005 J. Phys. D 38 174

    [2]

    Borjanovic V, Bistricic L, Mikac L, McGuire G E, Zamboni I, Jaksic M, Shenderova O 2012 J. Vac. Sci. Technol. B 30 041803

    [3]

    Tanaka M, Karttunen M, Pelto J, Salovaara P, Munter T, Honkanen M, Auletta T, Kannus K 2008 Trans. IEEE DEI 15 1224

    [4]

    Raetzke S, Kindersberger J 2006 IEEJ Trans. Fundam. Mater. 126 1044

    [5]

    Smith R C, Liang C, Landry M, Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 187

    [6]

    Fukushima K, Takahashi H, Takezawa Y, Kawahira T, Itoh M, Kanai J 2006 IEEJ Trans. Fundam. Mater. 126 1167

    [7]

    Tanka T, Ohki Y, Ochi M, Harada M, Imai T 2008 Trans. IEEE DEI 15 81

    [8]

    Lewis T J 2004 IEEE Int. Conf. Solid Dielectr. 2 792

    [9]

    Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 1

    [10]

    Nelson J K, Hu Y 2005 J. Phys. D 38 213

    [11]

    Tewari A, Gokhale A M 2005 Mater. Sci. Eng. A 396 22

    [12]

    Dissado L A, Fothergill J C 2004 Trans. IEEE DEI 11 737

    [13]

    Tanaka T, Montannari G C, Mlhaupt R 2004 Trans. IEEE DEI 11 763

    [14]

    Starr F, Schroder T, Glotzer S 2001 Phys. Rev. E 64 021802

    [15]

    Smith G, Bedrov D, Li L, Byutner O 2002 J. Chem. Phys. 117 9478

    [16]

    Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348

    [17]

    Zeng Q H, Yu A B, Lu G Q 2008 Prog. Polym. Sci. 33 191

    [18]

    Rigby D, Roe R J 1987 J. Chem. Phys. 87 7285

    [19]

    Rigby D, Roe R J 1988 J. Chem. Phys. 89 5280

    [20]

    Wilson E B, Decius J C, Cross P C 1980 Molecular Vibrations (New York: Dover)

    [21]

    Nosé S 1991 Prog. Theor. Phys. Suppl. 103 1

  • [1] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟. 物理学报, 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [2] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [3] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟. 物理学报, 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [4] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算. 物理学报, 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [5] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟. 物理学报, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [6] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [7] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [8] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究. 物理学报, 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [9] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [10] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究. 物理学报, 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [11] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [12] 李琳, 王暄, 孙伟峰, 雷清泉. 聚乙烯/银纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(10): 106201. doi: 10.7498/aps.62.106201
    [13] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究. 物理学报, 2012, 61(14): 146101. doi: 10.7498/aps.61.146101
    [14] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [15] 左学云, 李中秋, 王伟, 孟利军, 张凯旺, 钟建新. 碳纳米管熔接金电极的分子动力学模拟. 物理学报, 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [16] 李瑞, 胡元中, 王慧. Si表面间水平碳纳米管束的分子动力学模拟研究. 物理学报, 2011, 60(1): 016106. doi: 10.7498/aps.60.016106
    [17] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [18] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [19] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  4486
  • PDF下载量:  1393
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-15
  • 修回日期:  2013-06-04
  • 刊出日期:  2013-09-05

聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究

  • 1. 哈尔滨理工大学电气与电子工程学院, 工程电介质及其应用教育部重点实验室, 黑龙江省电介质工程重点实验室, 哈尔滨 150080
    基金项目: 国家重点基础研究发展计划(批准号:2012CB723308)资助的课题.

摘要: 通过分子动力学模拟对聚酰亚胺/铜纳米颗粒复合物的形态结构、 热力学性质、力学特性进行计算, 分析其随模拟温度和纳米颗粒尺寸的变化规律. 模拟结果表明, 聚酰亚胺/铜纳米颗粒复合物为各向同性的无定形态结构, 铜纳米颗粒与聚酰亚胺基体之间通过较强的范德华作用结合在一起使结构更加稳定, 铜纳米颗粒表面多个原子层呈现无定形状态, 在铜颗粒和聚酰亚胺基体之间形成界面层, 界面区域随颗粒尺寸和温度的增加分别减小和增加. 聚酰亚胺/铜纳米颗粒复合物的等容热容随着颗粒尺寸增大而明显增高, 随温度变化比聚酰亚胺体系更为缓慢, 在较低温度下较小颗粒尺寸复合物的热容比聚酰亚胺体系更低. 聚酰亚胺/铜纳米颗粒复合物的热压力系数随颗粒尺寸增加而显著增大, 比聚酰亚胺体系的热压力系数更小, 且随温度升高而减小的程度要小得多. 聚酰亚胺/铜纳米颗粒复合物的热力学性质表现出明显的尺度效应, 温度稳定性明显高于聚酰亚胺体系. 聚酰亚胺/铜纳米颗粒复合物的力学特性表现出各向同性材料的弹性常数张量, 具有比聚酰亚胺体系更低的杨氏模量和泊松比, 随温度升高分别减小和增大, 与聚酰亚胺体系随温度的变化趋势相反, 且杨氏模量的温度稳定性显著提高, 同时泊松比随纳米颗粒尺寸增大而减小, 具有明显的尺度效应. 加入铜纳米颗粒形成复合物可获得与聚酰亚胺体系显著不同的力学新特性.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回