搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟

梁燚然 梁清

引用本文:
Citation:

带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟

梁燚然, 梁清

Molecular simulation of interaction between charged nanoparticles and phase-separated biomembranes containning charged lipids

Liang Yi-Ran, Liang Qing
PDF
HTML
导出引用
  • 纳米颗粒在纳米医药、细胞成像等领域有着非常广泛的应用, 深入理解纳米颗粒与生物膜之间相互作用的微观机制是纳米颗粒合成与应用的重要基础. 本文采用粗粒化分子动力学模拟的方法研究了带电配体包裹的金纳米颗粒与相分离的带电生物膜之间的相互作用. 结果表明, 通过改变金纳米颗粒表面的配体密度、配体带电种类和比例, 以及膜内带电脂分子的种类, 可以方便地调控纳米颗粒在膜表面或膜内停留的位置和状态. 进一步从自由能的角度分析了带电纳米颗粒与带电生物膜之间相互作用的微观物理机制. 本文对纳米粒子在纳米医药、细胞成像等领域的应用具有一定的理论参考意义.
    Nanoparticles have been widely used in many fields such as nanomedicine and cell imaging. Understanding the microscopic mechanism of the interaction between nanoparticles and biomembranes is very vital for the synthesis and applications of nanoparticles. In this paper, using coarse-grained molecular dynamics simulation, we study the interaction between nanoparticles coated with fully or partially charged ligands and phase-separated biomembranes containing charged lipids. The results show that the final positions or states of nanoparticles on/in the biomembranes can be readily modulated by varying the grafting density, ratio, and type of charged ligands as well as the type of charged lipids. For the nanoparticle with a highly hydrophilic surface, the nanoparticle prefers to be adsorbed on the surface of the biomembrane. In this case, the electrostatic interaction determines that the nanoparticle is adsorbed on the surface of liquid-ordered domain or the surface of liquid-disordered domain. For the nanoparticle with a (partially) hydrophobic surface, the nanoparticle tends to penetrate into the lipid bilayer from the liquid-disordered domain. In this case, the hydrophobicity of the nanoparticle plays a crucial role in the penetrating of the nanoparticle. The hydrophilicity or hydrophobicity of the nanoparticle is affected by the ratio between the charged and neutral ligands, the grafting density of the charged ligands, and the ionic concentration in the system. Furthermore, the microscopic mechanism of the interaction between charged nanoparticles and charged biomembranes is revealed by using the potential of mean force between nanoparticles and lipid domains. The potential of mean force shows that none of the (partially) charged nanoparticles can spontaneously penetrate into the liquid-ordered domain due to a high free energy barrier but they can spontaneously penetrate into the liquid-disordered domain with a certain probability. However, due to the limitation of the simulation time and the number of sampling of the simulations, only some of the partially hydrophobic nanoparticles which are not initially adsorbed onto the surface of liquid-ordered domain are found to finally penetrate into the liquid-disordered domain in this work. This work yields some theoretical insights into the application of nanoparticles in nanomedicine, cell imaging, etc.
      通信作者: 梁清, qliang@zjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674287)资助的课题.
      Corresponding author: Liang Qing, qliang@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674287).
    [1]

    Bogart L K, Pourroy G, Murphy C J, Puntes V, Pellegrino T, Rosenblum D, Peer D, Lévy R 2014 ACS Nano 8 3107Google Scholar

    [2]

    Giljohann D A, Seferos D S, Daniel W L, Massich M D, Patel P C, Mirkin C A 2010 Angew. Chem. Int. Ed. 49 3280Google Scholar

    [3]

    Li N, Zhao P X, Astruc D 2014 Angew. Chem. Int. Ed. 53 1756Google Scholar

    [4]

    Miller K P, Wang L, Benicewicz B C, Decho A W 2015 Chem. Soc. Rev. 44 7787Google Scholar

    [5]

    Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P 2013 Chem. Soc. Rev. 42 1147Google Scholar

    [6]

    Yang X, Yang M X, Pang B, Vara M, Xia Y N 2015 Chem. Rev. 115 10410Google Scholar

    [7]

    Blanco E, Shen H P, Ferrari M 2015 Nat. Biotechnol. 33 941Google Scholar

    [8]

    Bobo D, Robinson K J, Islam J, Thurecht K J, Corrie S R 2016 Pharm. Res. 33 2373Google Scholar

    [9]

    Ding H M, Ma Y Q 2018 Nanoscale Horiz. 3 6Google Scholar

    [10]

    Lee B K, Yun Y H, Park K 2015 Chem. Eng. Sci. 125 158Google Scholar

    [11]

    Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M 2012 Chem. Soc. Rev. 41 2323Google Scholar

    [12]

    Soenen S J, Parak W J, Rejman J, Manshian B 2015 Chem. Rev. 115 2109Google Scholar

    [13]

    Chang Y Z, He L Z, Li Z B, Zeng L L, Song Z H, Li P H, Chan L, You Y Y, Yu X F, Chu P K, Chen T F 2017 ACS Nano 11 4848Google Scholar

    [14]

    Docter D, Strieth S, Westmeier D, Hayden O, Gao M Y, Knauer S K, Stauber R H 2015 Nanomedicine 10 503Google Scholar

    [15]

    Kobayashi K, Wei J J, Iida R 2014 Polym. J. 46 460Google Scholar

    [16]

    Ong Q, Luo Z, Stellacci F 2017 Acc. Chem. Res. 50 1911Google Scholar

    [17]

    Bhattacharjee S, Rietjens I M C M, Singh M P, Atkins T M, Purkait T K, Xu Z J, Regli S, Shukaliak A, Clark R J, Mitchell B S, Alink G M, Marcelis A T M, Fink M J, Veinot J G C, Kauzlarich S M, Zuilhof H 2013 Nanoscale 5 4870Google Scholar

    [18]

    Mout R, Moyano D F, Rana S, Rotello V M 2012 Chem. Soc. Rev. 41 2539Google Scholar

    [19]

    Saei A A, Yazdani M, Lohse S E, Bakhtiary Z, Serpooshan V, Ghavami M, Asadian M, Mashaghi S, Dreaden E C, Mashaghi A, Mahmoudi M 2017 Chem. Mater. 29 6578Google Scholar

    [20]

    Deserno M, Bickel T 2003 Europhys. Lett. 62 767Google Scholar

    [21]

    Mayor S, Pagano R E 2007 Nat. Rev. Mol. Cell Biol. 8 603Google Scholar

    [22]

    Osaka T, Nakanishi T, Shanmugam S, Takahama S, Zhang H 2009 Colloids. Surf. B 71 325Google Scholar

    [23]

    Cho E C, Xie J W, Wurm P A, Xia Y N 2009 Nano Lett. 9 1080Google Scholar

    [24]

    Gao Y C, Terazzi E, Seemann R, Fleury J B, Baulin V A 2016 Sci. Adv. 2 e1600261Google Scholar

    [25]

    Lu F, Wu S H, Hung Y, Mou C Y 2009 Small 5 1408Google Scholar

    [26]

    Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y 2004 J. Am. Chem. Soc. 126 6520Google Scholar

    [27]

    Wittenberg N J, Im H, Johnson T W, Xu X H, Warrington A E, Rodriguez M, Oh S H 2011 ACS Nano 5 7555Google Scholar

    [28]

    Ding H M, Ma Y Q 2012 Biomaterials 33 5798Google Scholar

    [29]

    Ding H M, Ma Y Q 2015 Small 11 1055Google Scholar

    [30]

    Dubavik A, Sezgin E, Lesnyak V, Gaponik N, Schwille P, Eychmüller A 2012 ACS Nano 6 2150Google Scholar

    [31]

    Ji Q J, Yuan B, Lu X M, Yang K, Ma Y Q 2016 Small 12 1140Google Scholar

    [32]

    Reynwar B J, Illya G, Harmandaris V A, Müller M M, Kremer K, Deserno M 2007 Nature 447 461Google Scholar

    [33]

    Vácha R, Martinez V F J, Frenkel D 2012 ACS Nano 6 10598Google Scholar

    [34]

    Yang K, Ma Y Q 2010 Nat. Nanotechnol. 5 579Google Scholar

    [35]

    Van Lehn R C, Alexander-Katz A 2015 Soft Matter 11 3165Google Scholar

    [36]

    Van Lehn R C, Atukorale P U, Carney R P, Yang Y S, Stellacci F, Irvine D J, Alexander-Katz A 2013 Nano Lett. 13 4060Google Scholar

    [37]

    Van Lehn R C, Ricci M, Silva P H J, Andreozzi P, Reguera J, Voïtchovsky K, Stellacci F, Alexander-Katz A 2014 Nat. Commun. 5 4482Google Scholar

    [38]

    Lin J Q, Zhang H W, Chen Z, Zheng Y G 2010 ACS Nano 4 5421Google Scholar

    [39]

    Lin J Q, Zheng Y G, Zhang H W, Chen Z 2011 Langmuir 27 8323Google Scholar

    [40]

    Ding H M, Li J, Chen N, Hu X J, Yang X F, Guo L J, Li Q, Zuo X L, Wang L H, Ma Y Q, Fan C H 2018 ACS Cent. Sci. 4 1344Google Scholar

    [41]

    Ding H M, Ma Y Q 2012 Nanoscale 4 1116Google Scholar

    [42]

    Simonelli F, Bochicchio D, Ferrando R, Rossi G 2015 J. Phys. Chem. Lett. 6 3175Google Scholar

    [43]

    Baumgart T, Hammond A T, Sengupta P, Hess S T, Holowka D A, Baird B A, Webb W W 2007 Proc. Natl. Acad. Sci. USA 104 3165Google Scholar

    [44]

    Lloyd D R, Kinzer K E, Tseng H S 1990 J. Membr. Sci. 52 239Google Scholar

    [45]

    van de Witte P, Dijkstra P J, van den Berg J W A, Feijen J 1996 J. Membr. Sci. 117 1Google Scholar

    [46]

    Chen X J, Tieleman D P, Liang Q 2018 Nanoscale 10 2481Google Scholar

    [47]

    Marrink S J, de Vries A H, Mark A E 2004 J. Phys. Chem. B 108 750Google Scholar

    [48]

    Marrink S J, Tieleman D P 2013 Chem. Soc. Rev. 42 6801Google Scholar

    [49]

    Ingólfsson H I, Melo M N, van Eerden F J, Arnarez C, Lopez C A, Wassenaar T A, Periole X, de Vries A H, Tieleman D P, Marrink S J 2014 J. Am. Chem. Soc. 136 14554Google Scholar

    [50]

    Li Z L, Ding H M, Ma Y Q 2013 Soft Matter 9 1281Google Scholar

    [51]

    Rocha E L D, Caramori G F, Rambo C R 2013 Phys. Chem. Chem. Phys. 15 2282Google Scholar

    [52]

    Nosé S, Klein M L 1983 Mol. Phys. 50 1055Google Scholar

    [53]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [54]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101Google Scholar

    [55]

    Jackson A M, Hu Y, Silva P J, Stellacci F 2006 J. Am. Chem. Soc. 128 11135Google Scholar

    [56]

    Terrill R H, Postlethwaite T A, Chen C H, Poon C D, Terzis A, Chen A, Hutchison J E, Clark M R, Wignall G 1995 J. Am. Chem. Soc. 117 12537Google Scholar

    [57]

    Wu J Z, Bratko D, Blanch H W, Prausnitz J M 1999 J. Chem. Phys. 111 7084Google Scholar

  • 图 1  金纳米颗粒和脂分子的分子结构示意图 其中DPPC, DFPC以及CHOL (胆固醇)为不带电的脂分子, 而DPPG和DFPG为头部带负电的脂分子; 另外DPPC和DPPG为饱和脂分子, 而DFPC和DFPG为不饱和脂分子; 颗粒和各种脂分子的各部分颜色表示通用于全文

    Fig. 1.  Molecular schematic illustrations of Au nanoparticle and lipids. Here, DPPC, DFPC and cholesterol (CHOL) are electrically neutral, while DPPG or DFPG has a negatively charged headgroup. Additionally, DPPC and DPPG are fully saturated, while DFPC and DFPG are poly-unsaturated. The coloring scheme of the nanoparticle and lipids is used throughout the whole paper.

    图 2  由DPPC (紫色), DFPC (粉红色)及CHOL (灰色)按4 ∶ 3 ∶ 3摩尔比组成的三组分相分离脂质双层膜的侧视图(上)和俯视图(下). 其中, Lo畴富含DPPC和CHOL, Ld畴富含DFPC

    Fig. 2.  Phase-separated lipid bilayer composed of DPPC (purple), DFPC (pink) and CHOL (gray) with the molar ratio of 4 ∶ 3 ∶ 3. Here, Lo domain is enriched in DPPC and CHOL, while Ld domain is enriched in DFPC.

    图 3  3种不同带正电的纳米颗粒吸附于由DPPC&DPPG/DFPC/CHOL组成的相分离膜上的动力学过程 (a) Au70/+70; (b) Au104/+104; (c) Au174/+174

    Fig. 3.  Dynamic processes of adsorption of three different positively charged nanoparticles onto the surface of phase-separated lipid bilayer composed of DPPC & DPPG/DFPC/CHOL: (a) Au70/+70; (b) Au104/+104; (c) Au174/+174.

    图 4  3种不同带正电的纳米颗粒吸附于由DPPC/DFPC&DFPG/CHOL组成的相分离膜上的动力学过程 (a) Au70/+70; (b) Au104/+104; (c) Au174/+174

    Fig. 4.  Dynamic processes of adsorption of three different positively charged nanoparticles into/onto the surface of the phase-separated lipid bilayer composed of DPPC/DFPC&DFPG/CHOL: (a) Au70/+70; (b) Au104/+104; (c) Au174/+174.

    图 5  两种带正电的颗粒与带电/中性的Lo/Ld脂质畴之间的PMF曲线 (a) Au70/+70; (b) Au174/+174

    Fig. 5.  PMF curves of two kinds of positively charged nanoparticles with charged/neutral Lo/Ld lipid domains: (a) Au70/+70; (b) Au174/+174.

    图 6  3种不同带负电的纳米颗粒吸附于DPPC&DPPG/DFPC/CHOL (a)—(c) 和DPPC/DFPC&DFPG/CHOL (d)−(f) 组成的相分离的膜表面上在模拟时间为15 μs时的稳定结构

    Fig. 6.  Final stable structures of adsorption of Au70/−70, Au104/−104, Au174/−174 onto the surface of DPPC&DPPG/DFPC/CHOL (a)−(c) and DPPC/DFPC&DFPG/CHOL (d)−(f) phase-separated lipid bilayers at the simulation time of 15 μs.

    图 7  Au70/−70与带电/中性的Lo/Ld脂质畴之间的PMF曲线

    Fig. 7.  PMF curves of Au70/−70 with charged/neutral Lo/Ld lipid domains.

    图 8  两种不同的表面部分带正电的纳米颗粒吸附或嵌入DPPC&DPPG/DFPC/CHOL (a), (c) 和DPPC/DFPC&DFPG/CHOL (b), (d) 组成的相分离的膜表面或内部在模拟时间为15 μs时的稳定结构

    Fig. 8.  Final stable structures of adsorption/penetration of Au104/+70 and Au174/+70 onto/into the DPPC&DPPG/DFPC/CHOL (a), (c) and DPPC/DFPC&DFPG/CHOL (b), (d) phase-separated lipid bilayers at the simulation time of 15 μs.

    图 9  两种不同的表面部分带负电的纳米颗粒吸附或嵌入DPPC&DPPG/DFPC/CHOL (a), (c) 和DPPC/DFPC&DFPG/CHOL (b), (d) 组成的相分离的膜表面或内部在模拟时间为15 μs时的稳定结构

    Fig. 9.  Final stable structures of adsorption/penetration of Au104/−70 and Au174/−70 onto/into the DPPC&DPPG/DFPC/CHOL (a), (c) and DPPC/DFPC&DFPG/CHOL (b), (d) phase-separated lipid bilayers at the simulation time of 15 μs.

    表 1  本文所研究金纳米颗粒的类型

    Table 1.  Types of Au nanoparticles in this work.

    金纳米颗粒配体总数带电配体数中性配体数
    Au70/±7070700
    Au104/±701047034
    Au104/±1041041040
    Au174/±7017470104
    Au174/±1741741740
    下载: 导出CSV

    表 2  脂质双层膜及脂质畴的组分

    Table 2.  Components of lipid bilayers and lipid domains.

    脂质双层膜带电脂Lo畴组分(带电性)Ld畴组分(带电性)
    DPPC&DPPG/DFPC/CHOLDPPGDPPC&DPPG/CHOL(带电)DFPC(中性)
    DPPC/DFPC&DFPG/CHOLDFPGDPPC/CHOL(中性)DFPC&DFPG(带电)
    下载: 导出CSV
  • [1]

    Bogart L K, Pourroy G, Murphy C J, Puntes V, Pellegrino T, Rosenblum D, Peer D, Lévy R 2014 ACS Nano 8 3107Google Scholar

    [2]

    Giljohann D A, Seferos D S, Daniel W L, Massich M D, Patel P C, Mirkin C A 2010 Angew. Chem. Int. Ed. 49 3280Google Scholar

    [3]

    Li N, Zhao P X, Astruc D 2014 Angew. Chem. Int. Ed. 53 1756Google Scholar

    [4]

    Miller K P, Wang L, Benicewicz B C, Decho A W 2015 Chem. Soc. Rev. 44 7787Google Scholar

    [5]

    Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P 2013 Chem. Soc. Rev. 42 1147Google Scholar

    [6]

    Yang X, Yang M X, Pang B, Vara M, Xia Y N 2015 Chem. Rev. 115 10410Google Scholar

    [7]

    Blanco E, Shen H P, Ferrari M 2015 Nat. Biotechnol. 33 941Google Scholar

    [8]

    Bobo D, Robinson K J, Islam J, Thurecht K J, Corrie S R 2016 Pharm. Res. 33 2373Google Scholar

    [9]

    Ding H M, Ma Y Q 2018 Nanoscale Horiz. 3 6Google Scholar

    [10]

    Lee B K, Yun Y H, Park K 2015 Chem. Eng. Sci. 125 158Google Scholar

    [11]

    Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M 2012 Chem. Soc. Rev. 41 2323Google Scholar

    [12]

    Soenen S J, Parak W J, Rejman J, Manshian B 2015 Chem. Rev. 115 2109Google Scholar

    [13]

    Chang Y Z, He L Z, Li Z B, Zeng L L, Song Z H, Li P H, Chan L, You Y Y, Yu X F, Chu P K, Chen T F 2017 ACS Nano 11 4848Google Scholar

    [14]

    Docter D, Strieth S, Westmeier D, Hayden O, Gao M Y, Knauer S K, Stauber R H 2015 Nanomedicine 10 503Google Scholar

    [15]

    Kobayashi K, Wei J J, Iida R 2014 Polym. J. 46 460Google Scholar

    [16]

    Ong Q, Luo Z, Stellacci F 2017 Acc. Chem. Res. 50 1911Google Scholar

    [17]

    Bhattacharjee S, Rietjens I M C M, Singh M P, Atkins T M, Purkait T K, Xu Z J, Regli S, Shukaliak A, Clark R J, Mitchell B S, Alink G M, Marcelis A T M, Fink M J, Veinot J G C, Kauzlarich S M, Zuilhof H 2013 Nanoscale 5 4870Google Scholar

    [18]

    Mout R, Moyano D F, Rana S, Rotello V M 2012 Chem. Soc. Rev. 41 2539Google Scholar

    [19]

    Saei A A, Yazdani M, Lohse S E, Bakhtiary Z, Serpooshan V, Ghavami M, Asadian M, Mashaghi S, Dreaden E C, Mashaghi A, Mahmoudi M 2017 Chem. Mater. 29 6578Google Scholar

    [20]

    Deserno M, Bickel T 2003 Europhys. Lett. 62 767Google Scholar

    [21]

    Mayor S, Pagano R E 2007 Nat. Rev. Mol. Cell Biol. 8 603Google Scholar

    [22]

    Osaka T, Nakanishi T, Shanmugam S, Takahama S, Zhang H 2009 Colloids. Surf. B 71 325Google Scholar

    [23]

    Cho E C, Xie J W, Wurm P A, Xia Y N 2009 Nano Lett. 9 1080Google Scholar

    [24]

    Gao Y C, Terazzi E, Seemann R, Fleury J B, Baulin V A 2016 Sci. Adv. 2 e1600261Google Scholar

    [25]

    Lu F, Wu S H, Hung Y, Mou C Y 2009 Small 5 1408Google Scholar

    [26]

    Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y 2004 J. Am. Chem. Soc. 126 6520Google Scholar

    [27]

    Wittenberg N J, Im H, Johnson T W, Xu X H, Warrington A E, Rodriguez M, Oh S H 2011 ACS Nano 5 7555Google Scholar

    [28]

    Ding H M, Ma Y Q 2012 Biomaterials 33 5798Google Scholar

    [29]

    Ding H M, Ma Y Q 2015 Small 11 1055Google Scholar

    [30]

    Dubavik A, Sezgin E, Lesnyak V, Gaponik N, Schwille P, Eychmüller A 2012 ACS Nano 6 2150Google Scholar

    [31]

    Ji Q J, Yuan B, Lu X M, Yang K, Ma Y Q 2016 Small 12 1140Google Scholar

    [32]

    Reynwar B J, Illya G, Harmandaris V A, Müller M M, Kremer K, Deserno M 2007 Nature 447 461Google Scholar

    [33]

    Vácha R, Martinez V F J, Frenkel D 2012 ACS Nano 6 10598Google Scholar

    [34]

    Yang K, Ma Y Q 2010 Nat. Nanotechnol. 5 579Google Scholar

    [35]

    Van Lehn R C, Alexander-Katz A 2015 Soft Matter 11 3165Google Scholar

    [36]

    Van Lehn R C, Atukorale P U, Carney R P, Yang Y S, Stellacci F, Irvine D J, Alexander-Katz A 2013 Nano Lett. 13 4060Google Scholar

    [37]

    Van Lehn R C, Ricci M, Silva P H J, Andreozzi P, Reguera J, Voïtchovsky K, Stellacci F, Alexander-Katz A 2014 Nat. Commun. 5 4482Google Scholar

    [38]

    Lin J Q, Zhang H W, Chen Z, Zheng Y G 2010 ACS Nano 4 5421Google Scholar

    [39]

    Lin J Q, Zheng Y G, Zhang H W, Chen Z 2011 Langmuir 27 8323Google Scholar

    [40]

    Ding H M, Li J, Chen N, Hu X J, Yang X F, Guo L J, Li Q, Zuo X L, Wang L H, Ma Y Q, Fan C H 2018 ACS Cent. Sci. 4 1344Google Scholar

    [41]

    Ding H M, Ma Y Q 2012 Nanoscale 4 1116Google Scholar

    [42]

    Simonelli F, Bochicchio D, Ferrando R, Rossi G 2015 J. Phys. Chem. Lett. 6 3175Google Scholar

    [43]

    Baumgart T, Hammond A T, Sengupta P, Hess S T, Holowka D A, Baird B A, Webb W W 2007 Proc. Natl. Acad. Sci. USA 104 3165Google Scholar

    [44]

    Lloyd D R, Kinzer K E, Tseng H S 1990 J. Membr. Sci. 52 239Google Scholar

    [45]

    van de Witte P, Dijkstra P J, van den Berg J W A, Feijen J 1996 J. Membr. Sci. 117 1Google Scholar

    [46]

    Chen X J, Tieleman D P, Liang Q 2018 Nanoscale 10 2481Google Scholar

    [47]

    Marrink S J, de Vries A H, Mark A E 2004 J. Phys. Chem. B 108 750Google Scholar

    [48]

    Marrink S J, Tieleman D P 2013 Chem. Soc. Rev. 42 6801Google Scholar

    [49]

    Ingólfsson H I, Melo M N, van Eerden F J, Arnarez C, Lopez C A, Wassenaar T A, Periole X, de Vries A H, Tieleman D P, Marrink S J 2014 J. Am. Chem. Soc. 136 14554Google Scholar

    [50]

    Li Z L, Ding H M, Ma Y Q 2013 Soft Matter 9 1281Google Scholar

    [51]

    Rocha E L D, Caramori G F, Rambo C R 2013 Phys. Chem. Chem. Phys. 15 2282Google Scholar

    [52]

    Nosé S, Klein M L 1983 Mol. Phys. 50 1055Google Scholar

    [53]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [54]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101Google Scholar

    [55]

    Jackson A M, Hu Y, Silva P J, Stellacci F 2006 J. Am. Chem. Soc. 128 11135Google Scholar

    [56]

    Terrill R H, Postlethwaite T A, Chen C H, Poon C D, Terzis A, Chen A, Hutchison J E, Clark M R, Wignall G 1995 J. Am. Chem. Soc. 117 12537Google Scholar

    [57]

    Wu J Z, Bratko D, Blanch H W, Prausnitz J M 1999 J. Chem. Phys. 111 7084Google Scholar

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究. 物理学报, 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 张雪松, 范振忠, 仝其雷, 付沅峰. 基于分子模拟方法的纳米气泡溃灭过程分析. 物理学报, 2024, 73(20): 204701. doi: 10.7498/aps.73.20241105
    [3] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [4] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [5] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟. 物理学报, 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [6] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算. 物理学报, 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [7] 段华, 李剑锋, 张红东. 二维情况下两组分带电囊泡形变耦合相分离的理论模拟研究. 物理学报, 2018, 67(3): 038701. doi: 10.7498/aps.67.20171740
    [8] 纪丹丹, 张劭光. 三区域膜泡相分离模式之间转变的研究. 物理学报, 2018, 67(18): 188701. doi: 10.7498/aps.67.20180828
    [9] 杨盼, 涂展春. 生物膜泡形状问题的理论研究. 物理学报, 2016, 65(18): 188701. doi: 10.7498/aps.65.188701
    [10] 李文飞, 张建, 王骏, 王炜. 生物大分子多尺度理论和计算方法. 物理学报, 2015, 64(9): 098701. doi: 10.7498/aps.64.098701
    [11] 夏彬凯, 李剑锋, 李卫华, 张红东, 邱枫. 基于离散变分原理的耗散动力学模拟方法:模拟三维囊泡形状. 物理学报, 2013, 62(24): 248701. doi: 10.7498/aps.62.248701
    [12] 李琳, 王暄, 孙伟峰, 雷清泉. 聚乙烯/银纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(10): 106201. doi: 10.7498/aps.62.106201
    [13] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [14] 臧渡洋, 张永建. 水/空气界面纳米颗粒单层膜流变特性的锥体压入法研究. 物理学报, 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [15] 臧渡洋, 张永建, Langevin Dominique. SiO2纳米颗粒单层膜流变特性的双Wilhelmy片法研究. 物理学报, 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
    [16] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究. 物理学报, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [17] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究. 物理学报, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [18] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象. 物理学报, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [19] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [20] 徐 敬. 用分子模拟方法研究羟基乙叉二膦酸(HEDP)在方解石表面的吸附行为. 物理学报, 2006, 55(3): 1107-1112. doi: 10.7498/aps.55.1107
计量
  • 文章访问数:  10974
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-23
  • 修回日期:  2018-11-27
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回