搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三区域膜泡相分离模式之间转变的研究

纪丹丹 张劭光

引用本文:
Citation:

三区域膜泡相分离模式之间转变的研究

纪丹丹, 张劭光

Phase separation pattern transition of three-domain vesicles

Ji Dan-Dan, Zhang Shao-Guang
PDF
导出引用
  • 基于Helfrich弹性曲率模型,结合实验参数,用直接极小化方法对三区域膜泡的两种相分离模式的稳定形状,及其之间的相变进行了计算,得出相变点为o*=0.49,与实验结果o*=0.5很接近.用直接极小化方法还研究了三区域膜泡发生发芽的必要条件,指出只有当约化线张力系数足够大,并且膜泡内外溶剂能自由渗透时,才可能发生发芽形变,并对渗透的可能机制进行了探讨.
    Based on the Helfrich elastic curvature energy model, the stable shapes for the two patterns of three-domain phase separation are studied in detail for the experimental parameters with direct minimization method in order to explain the interesting experimental results by Yanagisawa et al. (2010 Phys. Rev. E 82 051928). According to their experimental results, there are two transition processes. In the first process, the three-domain vesicles are formed, which are metastable. After several tens of minutes, the three-domain vesicles begin to bud, which is the second process. In the first process, the three-domain vesicles are formed with two patterns. The pattern with the liquid-ordered (Lo) phase in the middle with roughly cylindrical shape and two cap-shape liquid disordered (Ld) domains on each side of the Lo domain is termed pattern I in our paper, and the pattern with Ld domain in the middle with roughly cylindrical shape and two cap-shape Lo domains on each side is referred to as pattern Ⅱ. In the same paper of M. Yanagisawa et al., an approximate calculation is made with the vesicle shapes of the two patterns approximately represented by spheroids. Their calculation shows that the transition point of the two patterns is at o* 0.27 in the case of = 0.02 (or v = 0.942) and = 50, in contrast with the experimental result of o* 0.5. Here o is the area fraction of Lo phase, and is the excess area (which is usually represented by reduced volume v in the previous literatures), is the reduced line tension at the boundary of two adjacent domains. Thus the problem comes down to whether the transition point of the two patterns conforming with the experimental result can be obtained by the Helfrich elastic curvature energy theory if one performs a more precise calculation. Our calculation is performed with the direct minimization method, with the two boundaries of domains constrained in two parallel planes, this is an effective method to guarantee the smoothness of the boundary. To allow the vesicle to have a sufficient freedom to evolve, only constraints of fixed reduced volume and area fraction are imposed (The usual implementation method of constraints with the enclosed volume and the area of each phase fixed is not appropriate in this case. It does not allow the vesicle to have enough freedom to evolve, since the two boundaries are constrained in two preassigned planes). For the experimental parameters of = 50 and = 0.02, the transition point for the two patterns is obtained to be o* = 0.49, which is quite close to the experimental result of o* = 0.5. In order to understand the budding process in the second process, a detailed study is also made with the direct minimization method. It is found that the budding process can occur only for high enough value ( qslant 7.0) and permeable membrane (in other words, no constraint of reduced volume is exerted). One possible mechanism of the permeation is the temporary passage caused by the defect in the bilayer membrane due to large reduced line tension, which needs to be further checked experimentally. The three-domain vesicles found in the experiment have rotational symmetry in the case of small (or large v). What is more, they have a reflective symmetric plane perpendicular to the rotational symmetric axis, thus only vesicles with Dh symmetry are considered in this paper.
      通信作者: 张劭光, zhangsg@snnu.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号:GK201302011)和国家自然科学基金(批准号:10374063)资助的课题.
      Corresponding author: Zhang Shao-Guang, zhangsg@snnu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. GK201302011) and the National Natural Science Foundation of China (Grant No. 10374063).
    [1]

    Lu K Q, Liu J X 2006 Intoduction of Soft Matter Physics (Beijing: Peking University Press) pp384-385 (in Chinese) [陆坤权, 刘寄星 2006 软物质物理学导论 (北京: 北京大学出版社)第384385 页]

    [2]

    Helfrich W 1973 Z. Naturforsch. C 28 693

    [3]

    Ouyang Z C, Helfrich W 1987 Phys. Rev. Lett. 59 2486

    [4]

    Ouyang Z C, Helfrich W 1989 Phys. Rev. A 39 5280

    [5]

    Veatch S L, Keller S L 2002 Phys. Rev. Lett. 89 268101

    [6]

    Baumgart T, Hess S T, Webb W W 2003 Nature 425 821

    [7]

    Yanagisawa M, Imai M, Taninuchi T 2008 Phys. Rev. Lett. 100 148102

    [8]

    Semrau S, Idema T, Holtzer L, Schmidt T, Storm C 2008 Phys. Rev. Lett. 100 088101

    [9]

    Yanagisawa M, Imai M, Taninuchi T 2010 Phys. Rev. E 82 051928

    [10]

    Esposito C, Tian A, Melamed S, Johnson C, Tee S T, Baumgart T 2007 Biophys. J. 93 3169

    [11]

    Tian A, Johnson C, Wang W, Baumgart T 2007 Phys. Rev. Lett. 98 208102

    [12]

    Honerkamp-Smith A R, Cicuta P, Collins M D, Veatch S L, den Nijs M, Schick M, Keller S L 2008 Biophys. J. 95 236

    [13]

    Ouyang Z C 1990 Phys. Rev. A 41 4517

    [14]

    Naito H, Okuda M, Ouyang Z C 1993 Phys. Rev. E 48 2304

    [15]

    Naito H, Okuda M, Ouyang Z C 1995 Phys. Rev. Lett. 74 4345

    [16]

    Jlicher F, Lipowsky R 1996 Phys. Rev. E 53 2670

    [17]

    Jlicher F, Lipowsky R 1993 Phys. Rev. Lett. 70 2964

    [18]

    Zhou W B, Zhang S G 2015 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 43 43 (in Chinese) [周五斌, 张劭光 2015 陕西师范大学学报 (自然科学版) 43 43]

    [19]

    Gutlederer E, Gruhn T, Lipowsky R 2009 Soft Matter 5 3303

    [20]

    Seifert U, Berndl K, Lipowsky R 1991 Phys. Rev. A 44 1182

  • [1]

    Lu K Q, Liu J X 2006 Intoduction of Soft Matter Physics (Beijing: Peking University Press) pp384-385 (in Chinese) [陆坤权, 刘寄星 2006 软物质物理学导论 (北京: 北京大学出版社)第384385 页]

    [2]

    Helfrich W 1973 Z. Naturforsch. C 28 693

    [3]

    Ouyang Z C, Helfrich W 1987 Phys. Rev. Lett. 59 2486

    [4]

    Ouyang Z C, Helfrich W 1989 Phys. Rev. A 39 5280

    [5]

    Veatch S L, Keller S L 2002 Phys. Rev. Lett. 89 268101

    [6]

    Baumgart T, Hess S T, Webb W W 2003 Nature 425 821

    [7]

    Yanagisawa M, Imai M, Taninuchi T 2008 Phys. Rev. Lett. 100 148102

    [8]

    Semrau S, Idema T, Holtzer L, Schmidt T, Storm C 2008 Phys. Rev. Lett. 100 088101

    [9]

    Yanagisawa M, Imai M, Taninuchi T 2010 Phys. Rev. E 82 051928

    [10]

    Esposito C, Tian A, Melamed S, Johnson C, Tee S T, Baumgart T 2007 Biophys. J. 93 3169

    [11]

    Tian A, Johnson C, Wang W, Baumgart T 2007 Phys. Rev. Lett. 98 208102

    [12]

    Honerkamp-Smith A R, Cicuta P, Collins M D, Veatch S L, den Nijs M, Schick M, Keller S L 2008 Biophys. J. 95 236

    [13]

    Ouyang Z C 1990 Phys. Rev. A 41 4517

    [14]

    Naito H, Okuda M, Ouyang Z C 1993 Phys. Rev. E 48 2304

    [15]

    Naito H, Okuda M, Ouyang Z C 1995 Phys. Rev. Lett. 74 4345

    [16]

    Jlicher F, Lipowsky R 1996 Phys. Rev. E 53 2670

    [17]

    Jlicher F, Lipowsky R 1993 Phys. Rev. Lett. 70 2964

    [18]

    Zhou W B, Zhang S G 2015 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 43 43 (in Chinese) [周五斌, 张劭光 2015 陕西师范大学学报 (自然科学版) 43 43]

    [19]

    Gutlederer E, Gruhn T, Lipowsky R 2009 Soft Matter 5 3303

    [20]

    Seifert U, Berndl K, Lipowsky R 1991 Phys. Rev. A 44 1182

  • [1] 汪长超, 聂青苗, 石亮, 陈乃波, 胡来归, 鄢波. 混合沉积有机分子区域选择性生长的动力学蒙特卡罗模拟研究. 物理学报, 2024, 73(12): 126801. doi: 10.7498/aps.73.20231779
    [2] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离. 物理学报, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [3] 王晶, 焦阳, 田文得, 陈康. 低惯性与高惯性活性粒子混合体系中的相分离现象. 物理学报, 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [4] 刘博阳, 宋文涛, 刘争晖, 孙晓娟, 王开明, 王亚坤, 张春玉, 陈科蓓, 徐耿钊, 徐科, 黎大兵. AlGaN表面相分离的同位微区荧光光谱和高空间分辨表面电势表征. 物理学报, 2020, 69(12): 127302. doi: 10.7498/aps.69.20200099
    [5] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟. 物理学报, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [6] 段华, 李剑锋, 张红东. 二维情况下两组分带电囊泡形变耦合相分离的理论模拟研究. 物理学报, 2018, 67(3): 038701. doi: 10.7498/aps.67.20171740
    [7] 向俊尤, 王志国, 徐宝, 孙运斌, 吴鸿业, 赵建军, 鲁毅. 双层钙钛矿(La1-xGdx)4/3Sr5/3Mn2O7(x=0,0.05)的相分离. 物理学报, 2014, 63(15): 157501. doi: 10.7498/aps.63.157501
    [8] 任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静. 调幅分解及形核对相分离作用机理研究. 物理学报, 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [9] 王强. Bi0.5Ca0.5Mn1-xCoxO3体系中的电荷有序和相分离. 物理学报, 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [10] 王瑞敏, 陈光德. InGaN薄膜的紫外共振喇曼散射. 物理学报, 2009, 58(2): 1252-1256. doi: 10.7498/aps.58.1252
    [11] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究. 物理学报, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [12] 张成国, 章晓中. La1-xCaxMnO3(x≤1/3)中Ca掺杂的团簇化及其稳定性. 物理学报, 2008, 57(11): 7126-7131. doi: 10.7498/aps.57.7126
    [13] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究. 物理学报, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [14] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象. 物理学报, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [15] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究. 物理学报, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [16] 王瑞敏, 陈光德, 竹有章. 六方相InGaN外延膜的显微Raman散射. 物理学报, 2006, 55(2): 914-919. doi: 10.7498/aps.55.914
    [17] 蒋中英, 郁伟中, 黄彦君, 夏元复, 马淑新. SMMA/SMA共聚物共混物的自由体积的热动态特性与相分离行为的PALS研究. 物理学报, 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [18] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长. 物理学报, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [19] 张华力, 刘 卫, 李栋才, 吴修胜, 陈初升. La2NiO4+δ体系相分离现象的低频内耗研究. 物理学报, 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [20] 冯文强, 诸跃进. 外噪声场对二元混合物相分离的驱动作用. 物理学报, 2004, 53(11): 3690-3694. doi: 10.7498/aps.53.3690
计量
  • 文章访问数:  5688
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-26
  • 修回日期:  2018-06-15
  • 刊出日期:  2019-09-20

/

返回文章
返回