搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声悬浮条件下双水相液滴的蒸发与相分离

贺华丹 钟琦超 解文军

引用本文:
Citation:

声悬浮条件下双水相液滴的蒸发与相分离

贺华丹, 钟琦超, 解文军

Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops

He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun
PDF
HTML
导出引用
  • 采用声悬浮无容器处理技术, 研究了聚乙二醇-硫酸铵(PEG-AMS)双水相液滴的蒸发与相分离过程. 双水相液滴蒸发过程中, 液滴赤道直径的平方$ {d}^{2} $随时间线性减小, 同时液滴横纵比$ \gamma $随时间线性增大. 初始处于单相区的液滴随着水分蒸发可以跨越到双相区, 进而发生相分离. 声悬浮状态下PEG-AMS双水相液滴的相分离分为3个阶段: 首先液滴内部形成富PEG相微滴, 然后富PEG相微滴发生碰撞凝并同时向外迁移, 最终液滴形成水平分层结构. 对比分析了不同横纵比及不同成分的双水相液滴的蒸发和相分离过程, 发现横纵比$ \gamma $越大, 富PEG相体积分数越小, 则液滴蒸发速率越快; 横纵比$ \gamma $越大, 富PEG相体积分数越大, 则液滴相分离越快. 这些发现有助于深入理解声悬浮条件下液滴的运动特性、蒸发动力学和相分离规律, 并为材料的声悬浮无容器制备和加工提供依据.
    As a ground-based experimental method for simulating the containerless state in space, acoustic levitation provides excellent containerless and contact-free conditions for studying droplet dynamics, including droplet evaporation and phase separation. Meanwhile, the nonlinear effects of the acoustic field, such as acoustic radiation pressure and acoustic streaming, bring novel characteristics to the droplet evaporation process and phase separation process. In this work, the evaporation and phase separation of aqueous two-phase-system (ATPS) droplet composed of polyethylene glycol (PEG) and ammonium sulfate (AMS) are investigated by a single-axis acoustic levitator through the combination of image acquisition and processing technique. During the evaporation of the ATPS droplet, the square of its equatorial diameter, $ {d}^{2} $, decreases linearly with time, and its aspect ratio, $ \gamma $, increases linearly with time. The PEG-AMS droplet initially in the single-phase regime can enter into the two-phase regime as the water evaporates, resulting in phase separation. The phase separation of the acoustically levitated PEG-AMS ATPS droplet includes three stages: first, a large number of PEG-rich globules form inside the ATPS droplet, and then these PEG-rich globules collide, coagulate and migrate outward, and finally a horizontal layered structure of the whole droplet comes into being. The evaporation constant, the evolution of the PEG-rich globules and the AMS-rich phase area, are analyzed for ATPS droplets with different initial aspect ratios and different initial compositions. It is concluded that the greater the initial aspect ratio and the smaller the volume fraction of the PEG-rich phase, the faster the evaporation rate of the droplet is; the greater the initial aspect ratio and the lager the volume fraction of the PEG-rich phase, the faster the phase separation is. Numerical simulations show that the acoustically levitated droplets with a large aspect ratio are subjected to greater acoustic radiation pressure on the surface, and that the corresponding sound field is more intense and the acoustic streaming is stronger, which accelerates the evaporation and phase separation of the levitated droplets. These findings contribute to deepening our understanding of the motion characteristics, evaporation dynamics and phase separation of acoustically levitated droplets, and provide a foundation for studying the containerless preparation and processing the materials under acoustic levitation.
      通信作者: 解文军, wjxie@nwpu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA0716301)、国家自然科学基金(批准号: 52088101, 52225406)和中国航发产学研合作项目(批准号: HFZL2021CXY019)资助的课题.
      Corresponding author: Xie Wen-Jun, wjxie@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA0716301), the National Natural Science Foundation of China (Grant Nos. 52088101, 52225406), and the AECC Industry-University-Research Collaboration Program, China (Grant No. HFZL2021CXY019).
    [1]

    Andrade M A B, Pérez N, Adamowski J C 2018 Braz. J. Phys. 48 190Google Scholar

    [2]

    Xie W J, Wei B 2001 Appl. Phys. Lett. 79 881Google Scholar

    [3]

    Geng D L, Yan N, Xie W J, Lü Y J, Wei B B 2023 Adv. Mater. 35 2206464Google Scholar

    [4]

    Andrade M A B, Marzo A, Adamowski J C 2020 Appl. Phys. Lett. 116 250501Google Scholar

    [5]

    Ami Y B, Manela A 2021 J. Fluid Mech. 916 A24Google Scholar

    [6]

    Polychronopoulos S, Memoli G 2020 Sci. Rep. 10 4254Google Scholar

    [7]

    Combe N A, Donaldson D J 2017 J. Phys. Chem. A 121 7197Google Scholar

    [8]

    Bunio L B, Wang J, Kannaiyan R, Gates I D 2022 Chem. Eng. Sci. 251 117441Google Scholar

    [9]

    Inserra C, Regnault G, Cleve S, Mauger C, Blanc-Benon P 2021 J. Vis. Exp. 171 e62044Google Scholar

    [10]

    Lu X L, Twiefel J, Ma Z C, Yu T T, Wallaschek J, Fischer P 2021 Adv. Sci. 8 2100888Google Scholar

    [11]

    Xie W J, Wei B B 2004 Phys. Rev. E 70 046611Google Scholar

    [12]

    Argyri S M, Evenäs L, Bordes R 2023 J. Colloid Interface Sci. 640 637Google Scholar

    [13]

    杜人君, 解文军 2011 物理学报 60 114302Google Scholar

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar

    [14]

    Tuckermann R, Puskar L, Zavabeti M, Sekine R, Mcnaughton D 2009 Anal. Bioanal. Chem. 394 1433Google Scholar

    [15]

    Zaitone B A 2018 Int. J. Heat Mass Transf. 126 164Google Scholar

    [16]

    Maruyama Y, Hasegawa K 2020 RSC Adv. 10 1870Google Scholar

    [17]

    Brutin D, Starov V 2018 Chem. Soc. Rev. 47 558Google Scholar

    [18]

    Junk M, Hinrichs J, Polt F, Fechner J, Pauer W 2020 Int. J. Heat Mass Transf. 149 119057Google Scholar

    [19]

    Yarin A L, Brenn G, Kastner O, Rensink D, Tropea C 1999 J. Fluid Mech. 399 151Google Scholar

    [20]

    Yarin A L, Brenn G, Rensink D 2002 Int. J. Heat Fluid Flow 23 471Google Scholar

    [21]

    翟薇, 王楠, 魏炳波 2007 物理学报 56 2353Google Scholar

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353Google Scholar

    [22]

    Hoven C V, Dang X D, Coffin R C, Peet J, Nguyen T Q, Bazan G C 2010 Adv. Mater. 22 E63Google Scholar

    [23]

    Zhu J, Jiang L 2022 Langmuir 38 9043Google Scholar

    [24]

    齐玉, 曲昌荣, 王丽, 方腾 2014 物理学报 63 046401Google Scholar

    Qi Y, Qu C R, Wang L, Fang T 2014 Acta Phys. Sin. 63 046401Google Scholar

    [25]

    张鹏程, 方文玉, 鲍磊, 康文斌 2020 物理学报 69 138701Google Scholar

    Zhang P C, Fang W Y, Bao L, Kang W B 2020 Acta Phys. Sin. 69 138701Google Scholar

    [26]

    Molino J V D, Marques D A V, Júnior A P, Mazzola P G, Gatti M S V 2013 Biotechnol. Prog. 29 1343Google Scholar

    [27]

    Zhong Q C, Xie W J 2020 Appl. Phys. Lett. 116 224101Google Scholar

    [28]

    Chao Y, Shum H C 2020 Chem. Soc. Rev. 49 114Google Scholar

    [29]

    King L V 1934 Proc. Roy. Soc. A 147 212Google Scholar

    [30]

    Huddleston J G, Willauer H D, Rogers R D 2003 J. Chem. Eng. Data 48 1230Google Scholar

  • 图 1  单轴式声悬浮实验装置示意图

    Fig. 1.  Schematic diagram of single-axis acoustic levitator.

    图 2  H2O-10%PEG-10%AMS单相液滴的蒸发 (a) 质量随时间的变化; (b) 相分离情况

    Fig. 2.  Evaporation of H2O-10%PEG-10%AMS single-phase droplet: (a) Variation of mass with time; (b) phase separation.

    图 3  硫酸铵溶液电导率与浓度(质量分数)的关系

    Fig. 3.  Relationship between conductivity and concentration (mass fraction) of ammonium sulfate solution.

    图 4  不同横纵比的H2O-10%PEG-10%AMS液滴蒸发过程

    Fig. 4.  Evaporation of H2O-10%PEG-10%AMS droplets with different aspect ratios.

    图 5  液滴表面声辐射压分布与反射端-发射端间距H0的关系 (a) H0 = 34.1 mm时声场中的声辐射压分布; (b) 不同H0对应的液滴上下表面的声辐射压(空心符号和实心符号分别表示液滴上下表面)

    Fig. 5.  Relationship between the acoustic radiation pressure on the droplet’s surface and the reflector-emitter distance H0: (a) Distribution of acoustic radiation pressure when H0 = 34.1 mm; (b) acoustic radiation pressure on the upper and lower surfaces of the droplets with different H0 (the open symbols indicate the data on the upper surface, and the solid symbols the lower surface).

    图 6  不同成分相同初始横纵比液滴蒸发过程对比 (a) 赤道直径变化; (b) 横纵比变化

    Fig. 6.  Evaporation of droplets with different compositions and the same initial aspect ratio: (a) Variation of equatorial diameters; (b) variation of aspect ratios.

    图 7  H2O-32%PEG-21%AMS双水相液滴的相分离过程, 红色区域为富PEG相, 透明区域为富AMS相

    Fig. 7.  Phase separation of H2O-32%PEG-21%AMS ATPS droplet. The red area is the PEG-rich phase and the transparent area is the AMS-rich phase.

    图 8  不同成分双水相液滴的相分离过程分析 (a) 富PEG相微滴数量的演化; (b) 富AMS透明区等效直径的演化

    Fig. 8.  Phase separation of ATPS droplet with different compositions: (a) Number of PEG-rich globules vs. time; (b) equivalent diameter of AMS-rich transparent region vs. time.

    图 9  不同初始横纵比的双水相液滴的相分离过程 (a) 富PEG相微滴数量的演化; (b) 富AMS透明区等效直径的演化

    Fig. 9.  Phase separation of ATPS droplet with different initial aspect ratios: (a) Number of PEG-rich globules vs. time; (b) equivalent diameter of AMS-rich transparent region vs. time.

    表 1  三种成分的PEG-AMS双水相液体参数

    Table 1.  Parameters of three PEG-AMS ATPS liquids with different compositions.

    序号 成分(质量分数)/% 上下相体积比$ {V}_{{{T}}}/{V}_{{{B}}} $
    H2O PEG AMS
    51 22 27 0.47
    47 32 21 0.96
    43 43 14 2.08
    下载: 导出CSV

    表 2  声场模拟采用的物理参数

    Table 2.  Physical parameters for acoustic simulation.

    参数数值注释
    $ {H}_{0} $/mm34—35反射端-发射端间距
    $ {R}_{0} $/mm40反射端曲率半径
    $ {R}_{{\mathrm{b}}} $/mm20反射端截面半径
    $ {R}_{{\mathrm{a}}} $/mm12发射端截面半径
    $ {H}_{{\mathrm{s}}} $/mm20样品位置
    $ {R}_{1} $/mm2液滴半长轴
    $ {r}_{1} $/mm1液滴半短轴
    $ {\rho }_{0} $/(kg·m–3)1.293空气密度
    $ {c}_{0} $/(m·s–1)340空气中声速
    $ {v}_{0} $/(m·s–1)0.8916发射端振动速度幅值
    $ {f}_{0} $/kHz22超声波频率
    下载: 导出CSV

    表 3  H2O-10%PEG-10%AMS液滴蒸发过程中上、下相的成分变化

    Table 3.  Compositions of the top phase and bottom phase during evaporation of H2O-10%PEG-10%AMS droplet.

    蒸发时间/min 液滴成分(质量分数)/%
    上相成分 (质量分数)/%
    下相成分(质量分数)/%
    H2O PEG AMS H2O PEG AMS H2O PEG AMS
    0 80.0 10.0 10.0
    5 78.4 10.8 10.8
    10 76.6 11.7 11.7 75.2 15.6 9.2 80.4 0.7 18.9
    15 75.2 12.4 12.4 73.0 18.8 8.2 79.0 0.3 20.7
    20 73.6 13.2 13.2 70.8 21.7 7.5 78.0 0.0 22.0
    25 71.2 14.4 14.4 66.5 27.5 6.0 76.2 0.0 23.8
    30 68.8 15.6 15.6 62.4 33.2 4.4 74.2 0.0 25.8
    下载: 导出CSV
  • [1]

    Andrade M A B, Pérez N, Adamowski J C 2018 Braz. J. Phys. 48 190Google Scholar

    [2]

    Xie W J, Wei B 2001 Appl. Phys. Lett. 79 881Google Scholar

    [3]

    Geng D L, Yan N, Xie W J, Lü Y J, Wei B B 2023 Adv. Mater. 35 2206464Google Scholar

    [4]

    Andrade M A B, Marzo A, Adamowski J C 2020 Appl. Phys. Lett. 116 250501Google Scholar

    [5]

    Ami Y B, Manela A 2021 J. Fluid Mech. 916 A24Google Scholar

    [6]

    Polychronopoulos S, Memoli G 2020 Sci. Rep. 10 4254Google Scholar

    [7]

    Combe N A, Donaldson D J 2017 J. Phys. Chem. A 121 7197Google Scholar

    [8]

    Bunio L B, Wang J, Kannaiyan R, Gates I D 2022 Chem. Eng. Sci. 251 117441Google Scholar

    [9]

    Inserra C, Regnault G, Cleve S, Mauger C, Blanc-Benon P 2021 J. Vis. Exp. 171 e62044Google Scholar

    [10]

    Lu X L, Twiefel J, Ma Z C, Yu T T, Wallaschek J, Fischer P 2021 Adv. Sci. 8 2100888Google Scholar

    [11]

    Xie W J, Wei B B 2004 Phys. Rev. E 70 046611Google Scholar

    [12]

    Argyri S M, Evenäs L, Bordes R 2023 J. Colloid Interface Sci. 640 637Google Scholar

    [13]

    杜人君, 解文军 2011 物理学报 60 114302Google Scholar

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar

    [14]

    Tuckermann R, Puskar L, Zavabeti M, Sekine R, Mcnaughton D 2009 Anal. Bioanal. Chem. 394 1433Google Scholar

    [15]

    Zaitone B A 2018 Int. J. Heat Mass Transf. 126 164Google Scholar

    [16]

    Maruyama Y, Hasegawa K 2020 RSC Adv. 10 1870Google Scholar

    [17]

    Brutin D, Starov V 2018 Chem. Soc. Rev. 47 558Google Scholar

    [18]

    Junk M, Hinrichs J, Polt F, Fechner J, Pauer W 2020 Int. J. Heat Mass Transf. 149 119057Google Scholar

    [19]

    Yarin A L, Brenn G, Kastner O, Rensink D, Tropea C 1999 J. Fluid Mech. 399 151Google Scholar

    [20]

    Yarin A L, Brenn G, Rensink D 2002 Int. J. Heat Fluid Flow 23 471Google Scholar

    [21]

    翟薇, 王楠, 魏炳波 2007 物理学报 56 2353Google Scholar

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353Google Scholar

    [22]

    Hoven C V, Dang X D, Coffin R C, Peet J, Nguyen T Q, Bazan G C 2010 Adv. Mater. 22 E63Google Scholar

    [23]

    Zhu J, Jiang L 2022 Langmuir 38 9043Google Scholar

    [24]

    齐玉, 曲昌荣, 王丽, 方腾 2014 物理学报 63 046401Google Scholar

    Qi Y, Qu C R, Wang L, Fang T 2014 Acta Phys. Sin. 63 046401Google Scholar

    [25]

    张鹏程, 方文玉, 鲍磊, 康文斌 2020 物理学报 69 138701Google Scholar

    Zhang P C, Fang W Y, Bao L, Kang W B 2020 Acta Phys. Sin. 69 138701Google Scholar

    [26]

    Molino J V D, Marques D A V, Júnior A P, Mazzola P G, Gatti M S V 2013 Biotechnol. Prog. 29 1343Google Scholar

    [27]

    Zhong Q C, Xie W J 2020 Appl. Phys. Lett. 116 224101Google Scholar

    [28]

    Chao Y, Shum H C 2020 Chem. Soc. Rev. 49 114Google Scholar

    [29]

    King L V 1934 Proc. Roy. Soc. A 147 212Google Scholar

    [30]

    Huddleston J G, Willauer H D, Rogers R D 2003 J. Chem. Eng. Data 48 1230Google Scholar

  • [1] 王浩, 徐进良. 油面上相邻Leidenfrost液滴的相互作用及运动机制. 物理学报, 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [2] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟. 物理学报, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [3] 纪丹丹, 张劭光. 三区域膜泡相分离模式之间转变的研究. 物理学报, 2018, 67(18): 188701. doi: 10.7498/aps.67.20180828
    [4] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [5] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波. 电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究. 物理学报, 2017, 66(13): 136401. doi: 10.7498/aps.66.136401
    [6] 刘燕文, 王小霞, 陆玉新, 田宏, 朱虹, 孟鸣凤, 赵丽, 谷兵. 用于电真空器件的金属材料蒸发特性. 物理学报, 2016, 65(6): 068502. doi: 10.7498/aps.65.068502
    [7] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [8] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟. 物理学报, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [9] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积. 物理学报, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [10] 任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静. 调幅分解及形核对相分离作用机理研究. 物理学报, 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [11] 邵学鹏, 解文军. 声悬浮条件下黏性液滴的扇谐振荡规律研究. 物理学报, 2012, 61(13): 134302. doi: 10.7498/aps.61.134302
    [12] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡. 物理学报, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [13] 杜人君, 解文军. 声悬浮条件下环己烷液滴的蒸发凝固. 物理学报, 2011, 60(11): 114302. doi: 10.7498/aps.60.114302
    [14] 王强. Bi0.5Ca0.5Mn1-xCoxO3体系中的电荷有序和相分离. 物理学报, 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [15] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究. 物理学报, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [16] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象. 物理学报, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [17] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究. 物理学报, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [18] 蒋中英, 郁伟中, 黄彦君, 夏元复, 马淑新. SMMA/SMA共聚物共混物的自由体积的热动态特性与相分离行为的PALS研究. 物理学报, 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [19] 张 琳, 李恩普, 冯 伟, 洪振宇, 解文军, 马仰华. 声悬浮过程的激光全息干涉研究. 物理学报, 2005, 54(5): 2038-2042. doi: 10.7498/aps.54.2038
    [20] 徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律. 物理学报, 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
计量
  • 文章访问数:  789
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-11
  • 修回日期:  2023-12-07
  • 上网日期:  2023-12-29
  • 刊出日期:  2024-02-05

/

返回文章
返回