搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于电真空器件的金属材料蒸发特性

刘燕文 王小霞 陆玉新 田宏 朱虹 孟鸣凤 赵丽 谷兵

引用本文:
Citation:

用于电真空器件的金属材料蒸发特性

刘燕文, 王小霞, 陆玉新, 田宏, 朱虹, 孟鸣凤, 赵丽, 谷兵

Study on evaporation from alloys used in microwave vacuum electron devices

Liu Yan-Wen, Wang Xiao-Xia, Lu Yu-Xin, Tian Hong, Zhu Hong, Meng Ming-Feng, Zhao Li, Gu Bing
PDF
导出引用
  • 随着现代通信卫星技术的发展, 对微波真空电子器件的寿命和可靠性提出了更高的要求, 广泛应用于微波真空电子器件的蒙乃尔、不锈钢等金属材料的蒸发性能直接影响器件的可靠性和寿命. 本文采用飞行时间质谱仪(TOFMS)研究金属材料蒸发性能. 利用TOFMS测试了真空本底、蒙乃尔、不锈钢等各种金属材料蒸发物的成分和大小. 测试结果表明TOFMS具有很高的灵敏度, 是一种非常快捷的研究金属材料蒸发的实验手段. 测试结果发现在远低于Mn, Cu及Cr熔点的温度下, 蒙乃尔、不锈钢材料加热到800 ℃左右时就开始出现Mn, Cu元素的蒸发, 在900 ℃时就有大量Mn, Cu和Cr元素的蒸发, 这些蒸发物蒸发到绝缘陶瓷上会使电子枪的绝缘性能下降, 因而蒙乃尔和不锈钢不适用于阴极电子枪零件, 尤其不适用于长寿命高真空器件的阴极电子枪零件以及其他容易受到电子轰击的零件(如阳极、收集极等). 研究了在超高真空状态下加热时间对蒙乃尔和不锈钢材料表面结构的影响. 发现蒙乃尔和不 锈钢在900 ℃ 的温度下加热一段时间后, 其表面结构有了很大的变化, 出现了大量的孔洞和晶界, 并且随着处理时间的延长, 材料的晶粒间界逐渐变大, 从而使材料的强度下降、出现渗气甚至漏气等现象, 因此蒙乃尔和不锈钢材料制作的零件尤其是薄壁零件不宜长时间在超高真空状态下高温加热. 结合相关的理论知识对此现象进行了详细的分析.
    The development of modern satellite communication technologies is imposing higher demands on the lifetime and reliability of the microwave vacuum electronic devices, which directly depend on the evaporation properties of the extensively used Monel and stainless steel. Therefore, it is of vital importance to study the evaporation properties of these two types of metallic materials. For the first time, as far as we know, this paper proposes to study the evaporation properties of metallic materials using time-of-flight mass spectrometer (TOFMS). The components and the contents of the vacuum background, the evaporants from the Monel and from the stainless steel have been measured using the TOFMS, respectively. After the pressure of the measurement chamber is below 4.010-8 Pa, the TOFMS is used for the metallic materials working at different temperatures. They are respectively acquired when the Monel and stainless steel are at room temperature on operate between 750 to 900 ℃ under a pressure of 1.010-6 Pa. The measurements are carried out rapidly and in high sensitivity. As disclosed by the measurements, Mn and Cu began to evaporate when the Monel and the stainless steel are heated to 800 ℃, which is still far below the melting points of the two alloys (1243 ℃ and 1080 ℃). When the Monel and the stainless steel are further heated to 900 ℃, the evaporation of Mn, Cu, and Cr becomes quite considerable. Once the evaporated Mn, Cu, or Cr deposit on the ceramics for the insulation in an electron gun, its insulation will be deteriorated. Hence, the Monel and the stainless steel are not suitable to be use as the components in cathode electron guns, especially those used in the devices that are to work a long lifetime in high vacuum. Moreover, the Monel and the stainless steel are not suitable for used as the components that are often under the electron bombardment, e.g., anodes and collectors, either. The SEM images and XRD of the heat treated surface structures of the Monel and the stainless steel in ultrahigh vacuum (1.010-6 Pa) have also been studied. On heating at 900 ℃ for 30 and 120 min the surface structure and composition change remarkably and a significant reduction in Mn and Cr is visible, and also a large number of holes and crystal boundaries emerge on the surfaces of the two metallic alloys. With increasing heating time, the boundaries will grow larger and larger. As a result, the strength of the two metallic materials becomes weaker and gas permeation and leakage even occur. Therefore, it can be concluded that the components made from Monel and stainless steel, especially those with thin walls, should not be heated to high temperatures in ultrahigh vacuum for a long time. The above phenomena are analyzed in detail theoretically and the proper and feasible application methods of the metallic materials are explored in device design and technological process control. These works are expected to contribute to the prolonging of the lifetimes of the satellites, and will lead to tremendous economic benefits.
      通信作者: 刘燕文, liuyanwen58@sina.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB328900) 资助的课题.
      Corresponding author: Liu Yan-Wen, liuyanwen58@sina.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328900).
    [1]

    Liao F J 2006 Acta Electr. Sin. 31 3513 (in Chinese) [廖复疆 2006 电子学报 31 3513]

    [2]

    Zhao P C, Liao C, Feng J 2015 Chin. Phys. B 24 025101

    [3]

    Liu C, Wang Y H 2015 Chin. Phys. B 24 010602

    [4]

    Shin Y M, Barnett L R, Gamzina D 2009 Appl. Phys. Lett. 95 181505

    [5]

    Chu K R 2004 Rev. Mod. Phys. 76 2489

    [6]

    Sirigiri J R, Shaprio M A, Temkin R J 2003 Phys. Rev. Lett. 90 56302

    [7]

    Liu Y W, Wang X X, Zhu H 2013 Acta Phys. Sin. 62 234402 (in Chinese) [刘燕文, 王小霞, 朱虹 2013 物理学报 62 234402]

    [8]

    Shao W S, Zhang K, Li J, Yan S Q, Chen Q L 2003 Appl. Surf. Sci. 21 554

    [9]

    Liu Y W, Tian H, Han Y 2012 IEEE-Trans. on ED. 59 I36184

    [10]

    Wang J S, Liu W 2008 J. Phys. Chem. Solid 69 2103

    [11]

    Liao F J 1999 Vacuum Electronics (Beijing: Electronics Industry Press) (in Chinese) [廖复疆 1999 真空电子学 (北京: 电子工业出版社)]

    [12]

    Liu Y W, Tian H 2008 Sci. China E 38 1515 (in Chinese) [刘燕文, 田宏 2008 中国科学E 38 1515]

    [13]

    Wang J S, Liu W 2009 IEEE Trans. on ED 56 799

    [14]

    Liu Y W, HanY, Zhao L 2009 Acta. Electr. Sin. 316 1757 (in Chinese) [刘燕文, 韩勇, 赵丽2009 电子学报 316 1757]

    [15]

    Wang X X, Liu Y W 2014 IEEE-Trans. on ED. 61 605

    [16]

    Liu Y W, Wang X X, Tian H 2015 Sci. China Infor. Sci. 45 145 (in Chinese) [刘燕文, 王小霞, 田宏 2015 中国科学 信息科学 45 145]

    [17]

    Liu Y W, Tian H, Han Y 2009 Acta. Phys. Sin. 58 535 (in Chinese) [刘燕文, 田宏, 韩勇 2009 物理学报 58 535]

    [18]

    Li J, Yu Z Q, Shao W S, Zhang K 2005 Appl. Surf. Sci. 25 151

    [19]

    Wang X X, Liao X H, Luo J R 2008 Acta. Phys. Sin. 57 1924 (in Chinese) [王小霞, 廖显恒, 罗积润 2008 物理学报 57 1924]

    [20]

    Li X P, Sun S P, Yu Y, et. al. 2015 Chin. Phys. B 24 120502

    [21]

    Liu Y W, Tian H 2008 Sci. China E 51 1497

    [22]

    Zhang M C, Liu Y W, Yu S J 2014 IEEE-Trans. on ED 61 2983

    [23]

    Liu Y W 2006 Vacuum Sci. Tech. 26 240 (in Chinese) [刘燕文 2006 真空科学与技术学报 26 240]

    [24]

    Electronics Industry Technology Pyrometer (Beijing: Nat. defense Industry press) (in Chinese) [电子工业技术手册(4) 1990 (北京: 国防工业出版社)]

    [25]

    Gren M C, Skinner H B and Tuck H A 1981 Appl. Surf. Sci. 8 13

    [26]

    Guo W X 1984 J Electr. Infor.Tech. 6 166 (in Chinese) [郭文湘 1984 电子科学学刊 6 166]

    [27]

    Gotoh T, Hirasawa S and Kinosita K 1982 Thin Solid Film 87 385

    [28]

    Dudley K 1961 Vacuum 1 154

    [29]

    Verhoeven A T and Vandoveren H 1981 Appl. Surf. Sci. 8 95

    [30]

    Wooren L A, Ruehie A E 1955 J. Appl. Phys. 26 44

    [31]

    Mooke G E 1950 Phys. Rev. 77 246

    [32]

    Leverton W F, Sepherd W G 1952 J. Appl. Phys. 23 787

    [33]

    Zhan M Q, Zhang D P, He H B 2004 Chin. J. Lasers 11 1356 (in Chinese) [占美琼, 张东平,贺洪波 2004 中国激光 11 1356]

    [34]

    Liu Y W, Zhang H L 2004 International Vacuum Electronics Conference 214

    [35]

    Cheng Y J, Li D T, Zhang D X 2010 J. Vac. Sci. Technol. 30 54 (in Chinese) [成永军, 李得天, 张涤新 2010 真空科学与技术学报 30 54]

  • [1]

    Liao F J 2006 Acta Electr. Sin. 31 3513 (in Chinese) [廖复疆 2006 电子学报 31 3513]

    [2]

    Zhao P C, Liao C, Feng J 2015 Chin. Phys. B 24 025101

    [3]

    Liu C, Wang Y H 2015 Chin. Phys. B 24 010602

    [4]

    Shin Y M, Barnett L R, Gamzina D 2009 Appl. Phys. Lett. 95 181505

    [5]

    Chu K R 2004 Rev. Mod. Phys. 76 2489

    [6]

    Sirigiri J R, Shaprio M A, Temkin R J 2003 Phys. Rev. Lett. 90 56302

    [7]

    Liu Y W, Wang X X, Zhu H 2013 Acta Phys. Sin. 62 234402 (in Chinese) [刘燕文, 王小霞, 朱虹 2013 物理学报 62 234402]

    [8]

    Shao W S, Zhang K, Li J, Yan S Q, Chen Q L 2003 Appl. Surf. Sci. 21 554

    [9]

    Liu Y W, Tian H, Han Y 2012 IEEE-Trans. on ED. 59 I36184

    [10]

    Wang J S, Liu W 2008 J. Phys. Chem. Solid 69 2103

    [11]

    Liao F J 1999 Vacuum Electronics (Beijing: Electronics Industry Press) (in Chinese) [廖复疆 1999 真空电子学 (北京: 电子工业出版社)]

    [12]

    Liu Y W, Tian H 2008 Sci. China E 38 1515 (in Chinese) [刘燕文, 田宏 2008 中国科学E 38 1515]

    [13]

    Wang J S, Liu W 2009 IEEE Trans. on ED 56 799

    [14]

    Liu Y W, HanY, Zhao L 2009 Acta. Electr. Sin. 316 1757 (in Chinese) [刘燕文, 韩勇, 赵丽2009 电子学报 316 1757]

    [15]

    Wang X X, Liu Y W 2014 IEEE-Trans. on ED. 61 605

    [16]

    Liu Y W, Wang X X, Tian H 2015 Sci. China Infor. Sci. 45 145 (in Chinese) [刘燕文, 王小霞, 田宏 2015 中国科学 信息科学 45 145]

    [17]

    Liu Y W, Tian H, Han Y 2009 Acta. Phys. Sin. 58 535 (in Chinese) [刘燕文, 田宏, 韩勇 2009 物理学报 58 535]

    [18]

    Li J, Yu Z Q, Shao W S, Zhang K 2005 Appl. Surf. Sci. 25 151

    [19]

    Wang X X, Liao X H, Luo J R 2008 Acta. Phys. Sin. 57 1924 (in Chinese) [王小霞, 廖显恒, 罗积润 2008 物理学报 57 1924]

    [20]

    Li X P, Sun S P, Yu Y, et. al. 2015 Chin. Phys. B 24 120502

    [21]

    Liu Y W, Tian H 2008 Sci. China E 51 1497

    [22]

    Zhang M C, Liu Y W, Yu S J 2014 IEEE-Trans. on ED 61 2983

    [23]

    Liu Y W 2006 Vacuum Sci. Tech. 26 240 (in Chinese) [刘燕文 2006 真空科学与技术学报 26 240]

    [24]

    Electronics Industry Technology Pyrometer (Beijing: Nat. defense Industry press) (in Chinese) [电子工业技术手册(4) 1990 (北京: 国防工业出版社)]

    [25]

    Gren M C, Skinner H B and Tuck H A 1981 Appl. Surf. Sci. 8 13

    [26]

    Guo W X 1984 J Electr. Infor.Tech. 6 166 (in Chinese) [郭文湘 1984 电子科学学刊 6 166]

    [27]

    Gotoh T, Hirasawa S and Kinosita K 1982 Thin Solid Film 87 385

    [28]

    Dudley K 1961 Vacuum 1 154

    [29]

    Verhoeven A T and Vandoveren H 1981 Appl. Surf. Sci. 8 95

    [30]

    Wooren L A, Ruehie A E 1955 J. Appl. Phys. 26 44

    [31]

    Mooke G E 1950 Phys. Rev. 77 246

    [32]

    Leverton W F, Sepherd W G 1952 J. Appl. Phys. 23 787

    [33]

    Zhan M Q, Zhang D P, He H B 2004 Chin. J. Lasers 11 1356 (in Chinese) [占美琼, 张东平,贺洪波 2004 中国激光 11 1356]

    [34]

    Liu Y W, Zhang H L 2004 International Vacuum Electronics Conference 214

    [35]

    Cheng Y J, Li D T, Zhang D X 2010 J. Vac. Sci. Technol. 30 54 (in Chinese) [成永军, 李得天, 张涤新 2010 真空科学与技术学报 30 54]

  • [1] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [2] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学. 物理学报, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [3] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [4] 沈环, 胡春龙, 邓绪兰. 超短脉冲激光场中间二氯苯的激发态动力学. 物理学报, 2017, 66(15): 157801. doi: 10.7498/aps.66.157801
    [5] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp. 氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学. 物理学报, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [6] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [7] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟. 物理学报, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [8] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积. 物理学报, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [9] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究. 物理学报, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [10] 王燕, 姚志, 冯春雷, 刘佳宏, 丁洪斌. 355 nm激光光电离甲醛飞行时间质谱的研究. 物理学报, 2012, 61(1): 013301. doi: 10.7498/aps.61.013301
    [11] 王震遐, 竺建康, 任翠兰, 张伟. C59N和C19N晶体的合成. 物理学报, 2009, 58(7): 5046-5050. doi: 10.7498/aps.58.5046
    [12] 刘燕文, 田宏, 韩勇, 朱虹, 李玉涛, 徐振英, 孟鸣凤, 易红霞, 陆玉新, 张洪来, 刘濮鲲. 新型的覆纳米粒子薄膜阴极的研究. 物理学报, 2009, 58(12): 8635-8642. doi: 10.7498/aps.58.8635
    [13] 姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤. 丙酮分子的共振增强多光子电离解离过程的实验研究. 物理学报, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [14] 郝保良, 刘濮鲲, 唐昌建. 二维非正交坐标斜方格金属光子带隙结构. 物理学报, 2006, 55(4): 1862-1867. doi: 10.7498/aps.55.1862
    [15] 石 勇, 李奇峰, 汪 华, 戴静华, 刘世林, 马兴孝. 由飞行时间质谱峰形获取光解碎片平动能分布. 物理学报, 2005, 54(5): 2418-2423. doi: 10.7498/aps.54.2418
    [16] 罗晓琳, 孔祥蕾, 牛冬梅, 渠洪波, 李海洋. 团簇增强的纳秒激光电离产生Xez+(z≤20)高价离子. 物理学报, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [17] 夏柱红, 方黎, 郑海洋, 胡睿, 张玉莹, 孔祥和, 顾学军, 朱元, 张为俊, 鲍健, 熊鲁源. 气溶胶单粒子粒径的实时测量方法研究. 物理学报, 2004, 53(1): 320-324. doi: 10.7498/aps.53.320
    [18] 张可言. 金属材料在中强度激光辐照下的相变速度研究. 物理学报, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [19] 谢国锋, 王德武, 应纯同. 电子束激发原子对金属蒸发的影响. 物理学报, 2002, 51(10): 2286-2290. doi: 10.7498/aps.51.2286
    [20] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱. 物理学报, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
计量
  • 文章访问数:  3173
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-23
  • 修回日期:  2015-12-22
  • 刊出日期:  2016-03-05

用于电真空器件的金属材料蒸发特性

    基金项目: 国家重点基础研究发展计划(批准号: 2013CB328900) 资助的课题.

摘要: 随着现代通信卫星技术的发展, 对微波真空电子器件的寿命和可靠性提出了更高的要求, 广泛应用于微波真空电子器件的蒙乃尔、不锈钢等金属材料的蒸发性能直接影响器件的可靠性和寿命. 本文采用飞行时间质谱仪(TOFMS)研究金属材料蒸发性能. 利用TOFMS测试了真空本底、蒙乃尔、不锈钢等各种金属材料蒸发物的成分和大小. 测试结果表明TOFMS具有很高的灵敏度, 是一种非常快捷的研究金属材料蒸发的实验手段. 测试结果发现在远低于Mn, Cu及Cr熔点的温度下, 蒙乃尔、不锈钢材料加热到800 ℃左右时就开始出现Mn, Cu元素的蒸发, 在900 ℃时就有大量Mn, Cu和Cr元素的蒸发, 这些蒸发物蒸发到绝缘陶瓷上会使电子枪的绝缘性能下降, 因而蒙乃尔和不锈钢不适用于阴极电子枪零件, 尤其不适用于长寿命高真空器件的阴极电子枪零件以及其他容易受到电子轰击的零件(如阳极、收集极等). 研究了在超高真空状态下加热时间对蒙乃尔和不锈钢材料表面结构的影响. 发现蒙乃尔和不 锈钢在900 ℃ 的温度下加热一段时间后, 其表面结构有了很大的变化, 出现了大量的孔洞和晶界, 并且随着处理时间的延长, 材料的晶粒间界逐渐变大, 从而使材料的强度下降、出现渗气甚至漏气等现象, 因此蒙乃尔和不锈钢材料制作的零件尤其是薄壁零件不宜长时间在超高真空状态下高温加热. 结合相关的理论知识对此现象进行了详细的分析.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回