-
利用飞秒时间分辨的飞行时间质谱技术研究了间二氯苯的激发态动力学.间二氯苯分子吸收一个200 nm或者267 nm的光子被抽运到激发态,随后再吸收多个800 nm的光子被电离.实验获得了电离产生的离子质谱信号及其随抽运探测激光延迟时间的变化曲线.在200 nm时,分子被抽运到激发态(,*),可观察到三个相互竞争的解离通道的寿命:内转换到排斥态(n,*)或者(,*)并发生快速解离,其寿命约(0.150.01)ps;内转换到基态的高振动态,能量在基态热振动态间弛豫的寿命约为(4.940.08)ps;系间窜越到相邻的三重态从而发生预解离过程,其寿命约为(110.094.33)ps.在267 nm时,分子被抽运到第一激发态的低振动态,可观察到一个长寿命(约(1.060.05)ns)的系间窜越过程.除此之外,在碎片离子信号中还观察到了激发态与基态的高振动态之间的内转换过程.The excited state dynamics of aromatic hydrocarbon has attracted a great deal of attention due to its important role in photophysics and atmosphere chemistry. With the benefit of ultra-short laser pulses, the ultrafast phenomenon can be studied in a time resolved way. In the present work, m-dichlorobenzene, a typical model of aromatic hydrocarbon, is investigated by the femtosecond time resolved time-of-flight mass spectroscopy. In order to reveal its excited state dynamics, m-dichlorobenzene is pumped to the excited state after absorbing one 200/267 nm photon, and then ionized by absorbing 800 nm photons. Time resolved mass spectra are recorded with time of flight. At 200 nm, m-dichlorobenzene is excited to a (, *) state. Three decay components are observed in the transient profiles of m-dichlorobenzene ions, which correspond to three competition channels in the excited states. The first channel is an ultrafast dissociation process via a repulsive state with (n, *) or (, *) character, and the lifetime is (0.150.01) ps. The second channel is an internal conversion process from the populated excited state to the hot ground state, and the lifetime of the redistribution of the internal vibration in the hot ground state is (4.940.08) ps. The third channel is an intersystem crossing process to the triplet state, and the lifetime is (110.094.33) ps. Moreover, the transient profiles of C6H4Cl+/C6H4+ display similar decay tendencies to the transient profile of parent ion, except that longer lifetime constants ((127.3829.29) ps for C6H4Cl+, and (123.7637.12) ps for C6H4+, respectively) are observed. It is likely that the fragment ions result from the dissociative ionization of the parent molecule. At 267 nm, m-dichlorobenzene is excited to the first excited state with (n, *) character. Only C6H4Cl2+ and C6H4Cl+ are observed in the two-color mass spectrum. A slow decay component (~(1.060.05) ns) is obtained for both the parent ion and the fragment ion. It is attributed to an intersystem crossing process from the first excited state S1 to the triplet state T1. Furthermore, the transient profile of C6H4Cl+ displays other decay components, i.e., (2.480.09) ps, in addition to the slow decay component. This fast decay process can be attributed to an internal conversion process from the populated excited states to the hot ground states. The present study provides a more in-depth understanding of the ultrafast excited state dynamics of m-dichlorobenzene.
-
Keywords:
- femtosecond time-resolved /
- time-of-flight mass spectroscopy /
- m-dichlorobenzene /
- excited-state dynamics
[1] Bowman R M, Dantus M, Zewail A H 2013 Chem. Phys. Lett. 589 42
[2] Zewail A H 1988 Science 242 1645
[3] Suzuki T 2014 Molecules 19 2410
[4] Liu Z M, Hu C L, Li S, Xu Y Q, Wang Y M, Zhang B 2015 Chem. Phys. Lett. 619 44
[5] Yu H, Sanchez-Rodriguez J A, Pollum M, Crespo-Hernandez C E, Mai S, Marquetand P, Gonzalez L, Ullrich S 2016 Phys. Chem. Chem. Phys. 18 20168
[6] Stolow A 2014 Nat. Chem. 6 759
[7] Corrales M, Gonzalez-Vazquez J, Villanueva G B, Banares L 2014 Nat. Chem. 6 785
[8] Stair R 1949 J. Res. NBS 42 587
[9] Ichimura T, Mori Y, Shinohara H, Nishi N 1997 J. Chem. Phys. 107 835
[10] Lin M F, Dyakov Y A, Lin S H, Lee Y T, Ni C K 2005 J. Phys. Chem. 109 8344
[11] Gu X B, Wang G J, Huang J H, Han K L, He G Z, Lou N Q 2002 Phys. Chem. Chem. Phys. 4 6027
[12] Youn Y Y, Kwon C H, Choe J C, Kim M S 2002 J. Chem. Phys. 117 2538
[13] Karlsson D, Davidsson J 2008 J. Photochem. Photobiol. A: Chem. 195 242
[14] Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301
[15] Verhart N R, Navarro P, Faez S, Orrit M 2016 Phys. Chem. Chem. Phys. 18 17655
[16] Potts A W, Holland D M P, Powis I, Karlsson L, Trofimov A B, Bodzuk I L 2013 Chem. Phys. 415 84
[17] Cao Z Z, Wei Z R, Hua L Q, Hu C J, Zhang S, Zhang B 2009 Chem. Phys. Chem. 10 1299
[18] Wang Y Q, Yuan L W, Wang L, He G Z, Zhang Z G, Wang Q Y 2004 Chem. J. Chin. Univ. 25 1517 (in Chinese) [王艳秋, 袁丽威, 王利, 何国钟, 张志刚, 王清月 2004 高等学校化学学报 25 1517]
[19] Yuan L W, Wang Y Q, Wang L, Bai J L, He G Z 2004 Sci. China Ser. B: Chem. 34 121 (in Chinese) [袁丽威, 王艳秋, 王利, 白吉玲, 何国钟 2004 中国科学B辑 化学 34 121]
[20] Yuan L W, Zhu J Y, Wang Y Q, Wang L, Bai J L, He G Z 2005 Chem. Phys. Lett. 410 352
[21] Li X Y, Wang L, Wang Y Q, Song Z, Liu B K 2015 Acta Phys.-Chim. Sin. 31 1655 (in Chinese) [李晓营, 王利, 王艳秋, 宋哲, 刘本康 2015 物理化学学报 31 1655]
[22] Qin C C, Liu Y Z, Zhang S, Wang Y M, Tang Y, Zhang B 2011 Phys. Rev. A 83 033423
[23] Han K L, He G Z 2007 J. Photochem. Photobiol. C: Photochem. Rev. 8 55
[24] Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477
[25] Olesik S, Baer T, Morrow J C 1986 J. Phys. Chem. 90 3563
[26] Brown P 1970 Org. Mass Spectrom. 3 639
[27] Roeterdink W G, Janssen M H M 2002 Phys. Chem. Chem. Phys. 4 601
[28] Torres I, Martinez R, Castano F 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2423
[29] Shimoda A, Hikida T, Mori Y 1979 J. Phys. Chem. 83 1309
-
[1] Bowman R M, Dantus M, Zewail A H 2013 Chem. Phys. Lett. 589 42
[2] Zewail A H 1988 Science 242 1645
[3] Suzuki T 2014 Molecules 19 2410
[4] Liu Z M, Hu C L, Li S, Xu Y Q, Wang Y M, Zhang B 2015 Chem. Phys. Lett. 619 44
[5] Yu H, Sanchez-Rodriguez J A, Pollum M, Crespo-Hernandez C E, Mai S, Marquetand P, Gonzalez L, Ullrich S 2016 Phys. Chem. Chem. Phys. 18 20168
[6] Stolow A 2014 Nat. Chem. 6 759
[7] Corrales M, Gonzalez-Vazquez J, Villanueva G B, Banares L 2014 Nat. Chem. 6 785
[8] Stair R 1949 J. Res. NBS 42 587
[9] Ichimura T, Mori Y, Shinohara H, Nishi N 1997 J. Chem. Phys. 107 835
[10] Lin M F, Dyakov Y A, Lin S H, Lee Y T, Ni C K 2005 J. Phys. Chem. 109 8344
[11] Gu X B, Wang G J, Huang J H, Han K L, He G Z, Lou N Q 2002 Phys. Chem. Chem. Phys. 4 6027
[12] Youn Y Y, Kwon C H, Choe J C, Kim M S 2002 J. Chem. Phys. 117 2538
[13] Karlsson D, Davidsson J 2008 J. Photochem. Photobiol. A: Chem. 195 242
[14] Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301
[15] Verhart N R, Navarro P, Faez S, Orrit M 2016 Phys. Chem. Chem. Phys. 18 17655
[16] Potts A W, Holland D M P, Powis I, Karlsson L, Trofimov A B, Bodzuk I L 2013 Chem. Phys. 415 84
[17] Cao Z Z, Wei Z R, Hua L Q, Hu C J, Zhang S, Zhang B 2009 Chem. Phys. Chem. 10 1299
[18] Wang Y Q, Yuan L W, Wang L, He G Z, Zhang Z G, Wang Q Y 2004 Chem. J. Chin. Univ. 25 1517 (in Chinese) [王艳秋, 袁丽威, 王利, 何国钟, 张志刚, 王清月 2004 高等学校化学学报 25 1517]
[19] Yuan L W, Wang Y Q, Wang L, Bai J L, He G Z 2004 Sci. China Ser. B: Chem. 34 121 (in Chinese) [袁丽威, 王艳秋, 王利, 白吉玲, 何国钟 2004 中国科学B辑 化学 34 121]
[20] Yuan L W, Zhu J Y, Wang Y Q, Wang L, Bai J L, He G Z 2005 Chem. Phys. Lett. 410 352
[21] Li X Y, Wang L, Wang Y Q, Song Z, Liu B K 2015 Acta Phys.-Chim. Sin. 31 1655 (in Chinese) [李晓营, 王利, 王艳秋, 宋哲, 刘本康 2015 物理化学学报 31 1655]
[22] Qin C C, Liu Y Z, Zhang S, Wang Y M, Tang Y, Zhang B 2011 Phys. Rev. A 83 033423
[23] Han K L, He G Z 2007 J. Photochem. Photobiol. C: Photochem. Rev. 8 55
[24] Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477
[25] Olesik S, Baer T, Morrow J C 1986 J. Phys. Chem. 90 3563
[26] Brown P 1970 Org. Mass Spectrom. 3 639
[27] Roeterdink W G, Janssen M H M 2002 Phys. Chem. Chem. Phys. 4 601
[28] Torres I, Martinez R, Castano F 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2423
[29] Shimoda A, Hikida T, Mori Y 1979 J. Phys. Chem. 83 1309
计量
- 文章访问数: 4956
- PDF下载量: 133
- 被引次数: 0