搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究

王艳梅 唐颖 张嵩 龙金友 张冰

引用本文:
Citation:

飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究

王艳梅, 唐颖, 张嵩, 龙金友, 张冰

Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging

Wang Yan-Mei, Tang Ying, Zhang Song, Long Jin-You, Zhang Bing
PDF
导出引用
  • 分子量子态的研究,特别是分子激发态演化过程的研究不仅可以了解分子量子态的基本特性和量子态之间的相互作用,而且可以了解化学反应过程和反应通道间的相互作用.飞秒时间分辨质谱和光电子影像是将飞秒抽运-探测分别与飞行时间质谱和光电子影像相结合的超快谱学方法,为实现分子内部量子态探测,研究分子量子态相互作用及超快动力学过程提供了强有力的工具,可以在飞秒时间尺度下研究单分子反应过程中的光物理或光化学机理.本文详细介绍了飞秒时间分辨质谱和光电子影像的技术原理,并结合本课题组的工作,展示了这两种方法在量子态探测及相互作用研究领域,特别是激发态电子退相、波包演化、能量转移、分子光解动力学以及分子激发态结构动力学研究中的广泛应用.最后,对该技术的发展前景以及进一步的研究工作和方向进行了展望.
    Study of quantum states of molecules, especially the evolution of excited states can help to understand their basic features and the interactions among different states. Furthermore, the information about the chemical reaction process and the interactions among several reaction channels can be obtained. Femtosecond time-resolved mass spectrometry (TRMS) and time-resolved photoelectron imaging (TRPEI), which combine pump-probe technique with time of flight mass spectrometry and photoelectron imaging, are powerful tools for detecting the molecular quantum state and for studying the molecular quantum state interaction and molecular ultrafast dynamics. With these methods, the photochemistry and photophysics mechanism of isolated molecule reaction process can be investigated on a femtosecond time scale. The principles of TRMS and TRPEI are introduced here in detail. On the basis of substantial research achievements in our group, the applications of TRMS and TRPEI are presented in the study of ultrafast internal conversion and intersystem crossing, wavepacket evolution dynamics at excited states of polyatomic molecules, energy transfer process of polyatomic molecules, ultrafast photodissociation dynamics and structural evolution dynamics of molecular excited states. In the study of ultrafast internal conversion and intersystem crossing, the methyl substituted benzene derivatives and benzene halides are discussed as typical molecular systems. In the study of wavepacket evolution dynamics at excited states of polyatomic molecules, the real-time visualization of the dynamic evolution of CS2 4d and 6s Rydberg wave packet components, the vibrational wave packet dynamics in electronically excited pyrimidine, the rotational wave packet revivals and field-free alignment in excited o-dichlorobenzene are reported. In order to discuss the energy transfer process of polyatomic molecules, the intramolecular vibrational energy redisctribution between different vibrational states in p-difluorobenzene in the S1 low-energy regime and the intramolecular energy transfer between different electronic states in excited cyclopentanone are presented. For the study of ultrafast photodissociation dynamics, the dissociation constants and dynamics of the A band and even higher Rydberg states are investigated for the iodine alkanes and iodine cycloalkanes. Structural evolution dynamics of molecular excited states is the main focus of our recent research. The structural evolution dynamics can be extracted from the coherent superposition preparation of quantum states and the observation of quantum beat phenomenon, by taking 2, 4-difluorophenol and o-fluorophenol as examples. Time-dependent photoelectron peaks originating from the planar and nonplanar geometries in the first excited state in 2, 4-difluorophenol exhibit the clear beats with similar periodicities but a phase shift of π rad, offering an unambiguous picture of the oscillating nuclear motion between the planar geometry and the nonplanar minimum. Also, the structural evolution dynamics in o-fluorophenol via the butterfly vibration between planar geometry and nonplanar minimum is mapped directly. Finally, the potential developments and further possible research work and future directions of these techniques and researches are prospected.
      通信作者: 张冰, bzhang@wipm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:21573279,11574351,11674355,21303255,91121006,21273274,21773299)和国家重点基础研究发展计划(批准号:2013CB922200)资助的课题.
      Corresponding author: Zhang Bing, bzhang@wipm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21573279, 11574351, 11674355, 21303255, 91121006, 21273274, 21773299) and the National Basic Research Program of China (Grant No. 2013CB922200).
    [1]

    Zewail A H 2000 J. Phys. Chem. A 104 5660

    [2]

    Bixon M, Jortner J 1968 J. Chem. Phys. 48 715

    [3]

    Jortner J, Rice S A, Hochstrasser R M 1969 Adv. Photochem. 7 149

    [4]

    Henry S R, Siebrand W 1973 Organic Molecular Photophysics (Vol. 1) (London: Wiley) p152

    [5]

    Freed K F 1976 Radiationless Processes in Molecules and Condensed Phases (Berlin: Springer-Verlag) p23

    [6]

    Stock G, Domche W 1997 Adv. Phys. Chem. 100 1

    [7]

    Michl J, Bonacic-Koutechy V 1990 Electronic Aspects of Organic Photochemistry (New York: Wiley) p284

    [8]

    Schoenlein R W, Peteanu L A, Mathies R A, Shank C V 1991 Science 254 412

    [9]

    Jortner J, Ratner M A 1997 Molecular Electronics (Oxford: Blackwell) p5

    [10]

    Berera R, van Grondelle R, Kennis J T M 2009 Photosynth. Res. 101 105

    [11]

    Ruckebusch C, Sliwa M, Pernot P, de Juan A, Tauler R 2012 J. Photoch. Photobiol. C 13 1

    [12]

    Murti Y, Vijayan C 2014 Essentials of Nonlinear Optics (Chapter 5) (Chichester: Wiley & Sons) p77

    [13]

    Zewail A H 1988 Science 242 1645

    [14]

    Willberg D M, Breen J J, Gutmann M, Zewail A H 1991 J. Chem. Phys. 95 7136

    [15]

    Ashfold M N R, Howe J D 1994 Annu. Rev. Phys. Chem. 45 57

    [16]

    Urban P L, Chen Y C, Wang Y S 2016 Time-Resolved Mass Spectrometry: From Concept to Applications (Chichester: Wiley) p5

    [17]

    Chen Y C, Urban P L 2013 TrAC Trends Anal. Chem. 44 106

    [18]

    Suzuki T 2006 Annu. Rev. Phys. Chem. 57 555

    [19]

    Suzuki T 2012 Int. Rev. Phys. Chem. 31 265

    [20]

    Pedersen S, Herek J L, Zewail A H 1994 Science 266 1359

    [21]

    Eland J H D 1984 Photoelectron Spectroscopy (London: Butterworth) p134

    [22]

    Seel M, Domcke W 1991 J. Chem. Phys. 95 7806

    [23]

    Seel M, Domcke W 1991 Chem. Phys. 151 59

    [24]

    Born M, Oppenheimer R 1927 Ann. Phys. 389 457

    [25]

    Suzuki T, Wang L, Kohguchi H 1999 J. Chem. Phys. 111 4859

    [26]

    Wang L, Kohguchi H, Suzuki T 1999 Faraday Discuss. 113 37

    [27]

    Davies J A, LeClaire J E, Continetti R E, Hayden C C 1999 J. Chem. Phys. 111 1

    [28]

    Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M 2004 Science 306 669

    [29]

    Verlet J R R, Bragg A E, Kammrath A, Cheshnovsky O, Neumark D M 2005 Science 307 93

    [30]

    Dantus M, Janssen M H M, Zewail A H 1991 Chem. Phys. Lett. 181 281

    [31]

    Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M 2004 J. Am. Chem. Soc. 127 15283

    [32]

    King S B, Stephansen A B, Yokoi Y, Yandell M A, Kunin A, Takayanagi T, Neumark D M 2015 J. Chem. Phys. 143 024312

    [33]

    Li W L, Kunin A, Matthews E, Yoshikawa N, Dessent C E H, Neumark D M 2015 J. Chem. Phys. 145 044319

    [34]

    Kunin A, Li W L, Neumark D M 2016 Phys. Chem. Chem. Phys. 18 33226

    [35]

    Studzinski H, Zhang S, Wang Y, Temps F 2008 J. Chem. Phys. 128 164314

    [36]

    Huter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F 2016 J. Chem. Phys. 145 014302

    [37]

    Huter O, Temps F 2016 J. Chem. Phys. 145 214312

    [38]

    Noller B, Poisson L, Maksimenka R, Gobert O, Fischer I, Mestdagh J M 2009 J. Phys. Chem. A 113 3041

    [39]

    Wang B, Liu B, Wang Y, Wang L 2010 Int. J. Mass Spectrom. 289 92

    [40]

    Yang D, Chen Z, He Z, Wang H, Min Y, Yuan K, Dai D, Wu G, Yang X 2017 Phys. Chem. Chem. Phys. 19 29146

    [41]

    Yang D, Min Y, Chen Z, He Z, Yuan K, Dai D, Yang X, Wu G 2018 Phys. Chem. Chem. Phys. 20 15015

    [42]

    He Z, Yang D, Chen Z, Yuan K, Dai D, Wu G, Yang X 2017 Phys. Chem. Chem. Phys. 19 29795

    [43]

    Chandler D W, Houston P L 1987 J. Chem. Phys. 87 1445

    [44]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [45]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897

    [46]

    Zewail A H 2000 Angew. Chem. Int. Ed. 39 2586

    [47]

    Domcke W, Stock G 1997 Adv. Chem. Phys. 100 1

    [48]

    Lee E K C 1980 Adv. Photochem. 121 1

    [49]

    Farmanara P, Stert V, Radloff W, Hertel I V 2001 J. Phys. Chem. A 105 5613

    [50]

    Liu Z, Hu C, Li S, Xu Y, Wang Y, Zhang B 2015 Chem. Phys. Lett. 619 44

    [51]

    Radloff W, Stert V, Freudenberg Th, Hertel I V, Jouvet C, Dedonder-Lard-eux C, Solgadi D 1997 Chem. Phys. Lett. 281 20

    [52]

    Suzuki Y, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313

    [53]

    Spears K G, Rice S A 1971 J. Chem. Phys. 55 5561

    [54]

    Wunsch L, Neusser H J, Schlag E W 1975 Chem. Phys. Lett. 32 210

    [55]

    Clara M, Hellerer Th, Neusser H J 2000 Appl. Phys. B 71 431

    [56]

    Riedle E, Neusser H J, Schlag E W 1982 J. Phys. Chem. 86 4847

    [57]

    Sobolewski A, Woywod L, Domcke C W 1993 J. Chem. Phys. 8 5627

    [58]

    Bryce-Smith D, Longuet-Higgins H C 1966 Chem. Commun. 17 593

    [59]

    Liu Y, Tang B, Shen H, Zhang S, Zhang B 2010 Opt. Express 18 5791

    [60]

    Dzvonik M, Yang S, Bersohn C R 1974 J. Chem. Phys. 61 4408

    [61]

    Freedman A, Yang S, Kawasaki C, Bersohn M R 1980 J. Chem. Phys. 72 1028

    [62]

    Freitas J E, Hwang H J, El-Sayed M A 1993 J. Phys. Chem. 97 12481

    [63]

    Zhang H, Zhu R S, Wang G J, Han K L, He G Z, Lou N Q 1999 J. Chem. Phys. 110 2922

    [64]

    Zhu R S, Zhang H, Wang G J, Gu X B, Han K L, He G Z, Lou N Q 1999 Chem. Phys. Lett. 248 285

    [65]

    Gu X B, Wang G J, Huang J H, Han K L, He G Z, Lou N Q 2001 J. Phys. Chem. A 105 354

    [66]

    Yuan L W, Zhu J Y, Wang Y Q, Wang L, Bai J L, He G Z 2005 Chem. Phys. Lett. 410 352

    [67]

    Borg O A, Liu Y J, Persson P, Lunell S, Karlsson D, Kadi M, Davidsson J 2006 J. Phys. Chem. A 110 7045

    [68]

    Karlsson D, Davidsson J 2008 J. Photochem. Photobiol. A: Chem. 195 242

    [69]

    Ajitha D, Fedorov D G, Finley J P, Hirao K 2002 J. Chem. Phys. 17 7068

    [70]

    Liu Y J, Persson P, Karlsson H O, Lunell S, Kadi M, Karlsson D, Davidsson J 2004 J. Chem. Phys. 120 6502

    [71]

    Liu Y J, Persson P, Lunell S 2004 J. Phys. Chem. A 10 2339

    [72]

    Liu Y J, Persson P, Lunell S 2004 J. Chem. Phys. 121 11000

    [73]

    Liu Y J, Lunell S 2005 Phys. Chem. Chem. Phys. 7 3938

    [74]

    Karlsson D, Borg O A, Lunell S, Davidsson J, Karlsson H O 2008 J. Chem. Phys. 128 034307

    [75]

    Cao Z, Wei Z, Hua L, Hu C, Zhang S, Zhang B 2009 J. Chem. Phys. 130 144309

    [76]

    Heritage J P, Gustafson T K, Lin C H 1975 Phys. Rev. Lett. 34 1299

    [77]

    Felker P M, Baskin J S, Zewail A H 1986 J. Phys. Chem. 90 724

    [78]

    Baskin J S, Felker P M, Zewail A H 1987 J. Chem. Phys. 86 2483

    [79]

    Felker P M, Zewail A H 1987 J. Chem. Phys. 86 2460

    [80]

    Tsubouchi M, Whitaker B J, Wang L, Kohguchi H, Suzuki T 2001 Phys. Rev. Lett. 86 4500

    [81]

    Tsubouchi M, Suzuki T 2004 J. Chem. Phys. 121 8846

    [82]

    Cao Z Z, Wei Z R, Hua L Q, Hu C J, Zhang S, Zhang B 2009 ChemPhysChem 10 1299

    [83]

    Yeazell J A, Uzer T 2000 The Physics and Chemistry of Wave Packets (New York: Wiley) p221

    [84]

    Averbukh I S, Perelman N F 1989 Phys. Lett. A 139 449

    [85]

    Knospe O, Schmidt R 1996 Phys. Rev. A 54 1154

    [86]

    Leichtle C, Averbukh I S, Schleich W P 1996 Phys. Rev. Lett. 77 3999

    [87]

    Suzuki Y, Seideman T 2005 J. Chem. Phys. 122 234302

    [88]

    Yeazell J A, Mallalieu M, Stroud Jr C R 1990 Phys. Rev. Lett. 64 2007

    [89]

    Yeazell J A, Stroud Jr C R 1991 Phys. Rev. A 43 5153

    [90]

    Hammond C J, Reid K L, Ronayne K L 2006 J. Chem. Phys. 124 201102

    [91]

    Gruebele M, Zewail A H 1993 J. Chem. Phys. 98 883

    [92]

    Fischer I, Villeneuve D M, Vrakking M J J, Stolow A 1995 J. Chem. Phys. 102 5566

    [93]

    Vrakking M J J, Villeneuve D M, Stolow A 1996 Phys. Rev. A 54 R37

    [94]

    Fischer I, Vrakking M J J, Villeneuve D M, Stolow A 1996 Chem. Phys. 207 331

    [95]

    Baumert T, Engel V, Röttgermann C, Strunz W T, Gerber G 1992 Chem. Phys. Lett. 191 639

    [96]

    Averbukh I S, Vrakking M J J, Villeneuve D M, Stolow A 1996 Phys. Rev. Lett. 77 3518

    [97]

    Skovsen E, Machholm M, Ejdrup T, Thøgersen J, Stapelfeldt H 2002 Phys. Rev. Lett. 89 133004

    [98]

    Katsuki H, Chiba H, Girard B, Meier C, Ohmori K 2006 Science 311 1589

    [99]

    Arasaki Y, Takatsuka K, Wang K, Mckoy V 2003 Phys. Rev. Lett. 90 248303

    [100]

    Long J Y, Liu Y Z, Qin C C, Zhang S, Zhang B 2011 Opt. Express 19 4542

    [101]

    Li S, Long J Y, Lin F, Wang Y, Song X, Zhang B 2017 J. Chem. Phys. 147 044309

    [102]

    Bartels R A, Weinacht T C, Wagner N, Baertschy M, Greene C H, Murnane M M, Kapteyn H C 2002 Phys. Rev. Lett. 88 013903

    [103]

    Spence J C H, Schmidt K, Wu J S, Hembree G, Weierstall U, Doak B, Fromme P 2005 Acta Crystallogr. Sect. A: Found. Crystallogr. 61 237

    [104]

    Peterson E R, Buth C, Arms D A, Dunford R W, Kanter E P, Krassig B, Landahl E C, Pratt S T, Santra R, Southworth S H, Young L 2008 Appl. Phys. Lett. 92 094106

    [105]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [106]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D, Bandulet H C, Pepin H, Kieffer J C, Dorner R, Villeneuve D M, Corkum P B 2008 Science 320 1478

    [107]

    Kanai T, Minemoto S, Sakai H 2005 Nature 435 470

    [108]

    Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C, Velotta R 2005 Phys. Rev. Lett. 95 153902

    [109]

    Viftrup S S, Kumarappan V, Holmegaard L, Bisgaard C Z, Stapelfeldt H, Artamonov M, Hamilton E, Seideman T 2009 Phys. Rev. A 79 023404

    [110]

    Mairesse Y, Haessler S, Fabre B, Higuet J, Boutu W, Breger P, Constant E, Descamps D, Mevel E, Petit S, Salieres P 2008 New J. Phys. 10 025028

    [111]

    Ramakrishna S, Seideman T 2007 Phys. Rev. Lett. 99 103001

    [112]

    Poulsen M D, Peronne E, Stapelfeldt H, Bisgaard C Z, Viftrup S S, Hamilton E, Seideman T 2004 J. Chem. Phys. 121 783

    [113]

    Lee K F, Villeneuve D M, Corkum P B, Stolow A, Underwood J G 2006 Phys. Rev. Lett. 97 173001

    [114]

    Ramakrishna S, Seideman T 2005 Phys. Rev. Lett. 95 113001

    [115]

    Reuter M G, Sukharev M, Seideman T 2008 Phys. Rev. Lett. 101 208303

    [116]

    Spence J C H, Doak R B 2004 Phys. Rev. Lett. 92 198102

    [117]

    Qin C C, Liu Y Z, Zhang S, Wang Y M, Tang Y, Zhang B 2011 Phys. Rev. A 83 033423

    [118]

    Long J Y, Qin C C, Liu Y Z, Zhang S, Zhang B 2011 Phys. Rev. A 84 063409

    [119]

    Wang Y, Liu Z, Xu Y, Zhang B 2015 J. Chem. Phys. 143 064304

    [120]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897

    [121]

    Dantus M, Zewail A H 2004 Chem. Rev. 104 1717

    [122]

    Xu Y, Qiu X, Abulimiti B, Wang Y, Tang Y, Zhang B 2012 Chem. Phys. Lett. 554 53

    [123]

    Wang Y M, Shen H, Hua L Q, Hu C J, Zhang B 2009 Opt. Express 17 10506

    [124]

    Hu C, Wang L, Wang Y, Tang Y, Long J, Zhang B 2016 Chem. Phys. Lett. 658 134

    [125]

    Lin F, Li S, Song X, Tang Y, Wang Y, Zhang B 2017 Phys. Rev. A 95 043421

    [126]

    Lin F, Li S, Song X, Wang Y, Long J Y, Zhang B 2017 Sci. Rep. 7 15362

  • [1]

    Zewail A H 2000 J. Phys. Chem. A 104 5660

    [2]

    Bixon M, Jortner J 1968 J. Chem. Phys. 48 715

    [3]

    Jortner J, Rice S A, Hochstrasser R M 1969 Adv. Photochem. 7 149

    [4]

    Henry S R, Siebrand W 1973 Organic Molecular Photophysics (Vol. 1) (London: Wiley) p152

    [5]

    Freed K F 1976 Radiationless Processes in Molecules and Condensed Phases (Berlin: Springer-Verlag) p23

    [6]

    Stock G, Domche W 1997 Adv. Phys. Chem. 100 1

    [7]

    Michl J, Bonacic-Koutechy V 1990 Electronic Aspects of Organic Photochemistry (New York: Wiley) p284

    [8]

    Schoenlein R W, Peteanu L A, Mathies R A, Shank C V 1991 Science 254 412

    [9]

    Jortner J, Ratner M A 1997 Molecular Electronics (Oxford: Blackwell) p5

    [10]

    Berera R, van Grondelle R, Kennis J T M 2009 Photosynth. Res. 101 105

    [11]

    Ruckebusch C, Sliwa M, Pernot P, de Juan A, Tauler R 2012 J. Photoch. Photobiol. C 13 1

    [12]

    Murti Y, Vijayan C 2014 Essentials of Nonlinear Optics (Chapter 5) (Chichester: Wiley & Sons) p77

    [13]

    Zewail A H 1988 Science 242 1645

    [14]

    Willberg D M, Breen J J, Gutmann M, Zewail A H 1991 J. Chem. Phys. 95 7136

    [15]

    Ashfold M N R, Howe J D 1994 Annu. Rev. Phys. Chem. 45 57

    [16]

    Urban P L, Chen Y C, Wang Y S 2016 Time-Resolved Mass Spectrometry: From Concept to Applications (Chichester: Wiley) p5

    [17]

    Chen Y C, Urban P L 2013 TrAC Trends Anal. Chem. 44 106

    [18]

    Suzuki T 2006 Annu. Rev. Phys. Chem. 57 555

    [19]

    Suzuki T 2012 Int. Rev. Phys. Chem. 31 265

    [20]

    Pedersen S, Herek J L, Zewail A H 1994 Science 266 1359

    [21]

    Eland J H D 1984 Photoelectron Spectroscopy (London: Butterworth) p134

    [22]

    Seel M, Domcke W 1991 J. Chem. Phys. 95 7806

    [23]

    Seel M, Domcke W 1991 Chem. Phys. 151 59

    [24]

    Born M, Oppenheimer R 1927 Ann. Phys. 389 457

    [25]

    Suzuki T, Wang L, Kohguchi H 1999 J. Chem. Phys. 111 4859

    [26]

    Wang L, Kohguchi H, Suzuki T 1999 Faraday Discuss. 113 37

    [27]

    Davies J A, LeClaire J E, Continetti R E, Hayden C C 1999 J. Chem. Phys. 111 1

    [28]

    Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M 2004 Science 306 669

    [29]

    Verlet J R R, Bragg A E, Kammrath A, Cheshnovsky O, Neumark D M 2005 Science 307 93

    [30]

    Dantus M, Janssen M H M, Zewail A H 1991 Chem. Phys. Lett. 181 281

    [31]

    Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M 2004 J. Am. Chem. Soc. 127 15283

    [32]

    King S B, Stephansen A B, Yokoi Y, Yandell M A, Kunin A, Takayanagi T, Neumark D M 2015 J. Chem. Phys. 143 024312

    [33]

    Li W L, Kunin A, Matthews E, Yoshikawa N, Dessent C E H, Neumark D M 2015 J. Chem. Phys. 145 044319

    [34]

    Kunin A, Li W L, Neumark D M 2016 Phys. Chem. Chem. Phys. 18 33226

    [35]

    Studzinski H, Zhang S, Wang Y, Temps F 2008 J. Chem. Phys. 128 164314

    [36]

    Huter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F 2016 J. Chem. Phys. 145 014302

    [37]

    Huter O, Temps F 2016 J. Chem. Phys. 145 214312

    [38]

    Noller B, Poisson L, Maksimenka R, Gobert O, Fischer I, Mestdagh J M 2009 J. Phys. Chem. A 113 3041

    [39]

    Wang B, Liu B, Wang Y, Wang L 2010 Int. J. Mass Spectrom. 289 92

    [40]

    Yang D, Chen Z, He Z, Wang H, Min Y, Yuan K, Dai D, Wu G, Yang X 2017 Phys. Chem. Chem. Phys. 19 29146

    [41]

    Yang D, Min Y, Chen Z, He Z, Yuan K, Dai D, Yang X, Wu G 2018 Phys. Chem. Chem. Phys. 20 15015

    [42]

    He Z, Yang D, Chen Z, Yuan K, Dai D, Wu G, Yang X 2017 Phys. Chem. Chem. Phys. 19 29795

    [43]

    Chandler D W, Houston P L 1987 J. Chem. Phys. 87 1445

    [44]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [45]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897

    [46]

    Zewail A H 2000 Angew. Chem. Int. Ed. 39 2586

    [47]

    Domcke W, Stock G 1997 Adv. Chem. Phys. 100 1

    [48]

    Lee E K C 1980 Adv. Photochem. 121 1

    [49]

    Farmanara P, Stert V, Radloff W, Hertel I V 2001 J. Phys. Chem. A 105 5613

    [50]

    Liu Z, Hu C, Li S, Xu Y, Wang Y, Zhang B 2015 Chem. Phys. Lett. 619 44

    [51]

    Radloff W, Stert V, Freudenberg Th, Hertel I V, Jouvet C, Dedonder-Lard-eux C, Solgadi D 1997 Chem. Phys. Lett. 281 20

    [52]

    Suzuki Y, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313

    [53]

    Spears K G, Rice S A 1971 J. Chem. Phys. 55 5561

    [54]

    Wunsch L, Neusser H J, Schlag E W 1975 Chem. Phys. Lett. 32 210

    [55]

    Clara M, Hellerer Th, Neusser H J 2000 Appl. Phys. B 71 431

    [56]

    Riedle E, Neusser H J, Schlag E W 1982 J. Phys. Chem. 86 4847

    [57]

    Sobolewski A, Woywod L, Domcke C W 1993 J. Chem. Phys. 8 5627

    [58]

    Bryce-Smith D, Longuet-Higgins H C 1966 Chem. Commun. 17 593

    [59]

    Liu Y, Tang B, Shen H, Zhang S, Zhang B 2010 Opt. Express 18 5791

    [60]

    Dzvonik M, Yang S, Bersohn C R 1974 J. Chem. Phys. 61 4408

    [61]

    Freedman A, Yang S, Kawasaki C, Bersohn M R 1980 J. Chem. Phys. 72 1028

    [62]

    Freitas J E, Hwang H J, El-Sayed M A 1993 J. Phys. Chem. 97 12481

    [63]

    Zhang H, Zhu R S, Wang G J, Han K L, He G Z, Lou N Q 1999 J. Chem. Phys. 110 2922

    [64]

    Zhu R S, Zhang H, Wang G J, Gu X B, Han K L, He G Z, Lou N Q 1999 Chem. Phys. Lett. 248 285

    [65]

    Gu X B, Wang G J, Huang J H, Han K L, He G Z, Lou N Q 2001 J. Phys. Chem. A 105 354

    [66]

    Yuan L W, Zhu J Y, Wang Y Q, Wang L, Bai J L, He G Z 2005 Chem. Phys. Lett. 410 352

    [67]

    Borg O A, Liu Y J, Persson P, Lunell S, Karlsson D, Kadi M, Davidsson J 2006 J. Phys. Chem. A 110 7045

    [68]

    Karlsson D, Davidsson J 2008 J. Photochem. Photobiol. A: Chem. 195 242

    [69]

    Ajitha D, Fedorov D G, Finley J P, Hirao K 2002 J. Chem. Phys. 17 7068

    [70]

    Liu Y J, Persson P, Karlsson H O, Lunell S, Kadi M, Karlsson D, Davidsson J 2004 J. Chem. Phys. 120 6502

    [71]

    Liu Y J, Persson P, Lunell S 2004 J. Phys. Chem. A 10 2339

    [72]

    Liu Y J, Persson P, Lunell S 2004 J. Chem. Phys. 121 11000

    [73]

    Liu Y J, Lunell S 2005 Phys. Chem. Chem. Phys. 7 3938

    [74]

    Karlsson D, Borg O A, Lunell S, Davidsson J, Karlsson H O 2008 J. Chem. Phys. 128 034307

    [75]

    Cao Z, Wei Z, Hua L, Hu C, Zhang S, Zhang B 2009 J. Chem. Phys. 130 144309

    [76]

    Heritage J P, Gustafson T K, Lin C H 1975 Phys. Rev. Lett. 34 1299

    [77]

    Felker P M, Baskin J S, Zewail A H 1986 J. Phys. Chem. 90 724

    [78]

    Baskin J S, Felker P M, Zewail A H 1987 J. Chem. Phys. 86 2483

    [79]

    Felker P M, Zewail A H 1987 J. Chem. Phys. 86 2460

    [80]

    Tsubouchi M, Whitaker B J, Wang L, Kohguchi H, Suzuki T 2001 Phys. Rev. Lett. 86 4500

    [81]

    Tsubouchi M, Suzuki T 2004 J. Chem. Phys. 121 8846

    [82]

    Cao Z Z, Wei Z R, Hua L Q, Hu C J, Zhang S, Zhang B 2009 ChemPhysChem 10 1299

    [83]

    Yeazell J A, Uzer T 2000 The Physics and Chemistry of Wave Packets (New York: Wiley) p221

    [84]

    Averbukh I S, Perelman N F 1989 Phys. Lett. A 139 449

    [85]

    Knospe O, Schmidt R 1996 Phys. Rev. A 54 1154

    [86]

    Leichtle C, Averbukh I S, Schleich W P 1996 Phys. Rev. Lett. 77 3999

    [87]

    Suzuki Y, Seideman T 2005 J. Chem. Phys. 122 234302

    [88]

    Yeazell J A, Mallalieu M, Stroud Jr C R 1990 Phys. Rev. Lett. 64 2007

    [89]

    Yeazell J A, Stroud Jr C R 1991 Phys. Rev. A 43 5153

    [90]

    Hammond C J, Reid K L, Ronayne K L 2006 J. Chem. Phys. 124 201102

    [91]

    Gruebele M, Zewail A H 1993 J. Chem. Phys. 98 883

    [92]

    Fischer I, Villeneuve D M, Vrakking M J J, Stolow A 1995 J. Chem. Phys. 102 5566

    [93]

    Vrakking M J J, Villeneuve D M, Stolow A 1996 Phys. Rev. A 54 R37

    [94]

    Fischer I, Vrakking M J J, Villeneuve D M, Stolow A 1996 Chem. Phys. 207 331

    [95]

    Baumert T, Engel V, Röttgermann C, Strunz W T, Gerber G 1992 Chem. Phys. Lett. 191 639

    [96]

    Averbukh I S, Vrakking M J J, Villeneuve D M, Stolow A 1996 Phys. Rev. Lett. 77 3518

    [97]

    Skovsen E, Machholm M, Ejdrup T, Thøgersen J, Stapelfeldt H 2002 Phys. Rev. Lett. 89 133004

    [98]

    Katsuki H, Chiba H, Girard B, Meier C, Ohmori K 2006 Science 311 1589

    [99]

    Arasaki Y, Takatsuka K, Wang K, Mckoy V 2003 Phys. Rev. Lett. 90 248303

    [100]

    Long J Y, Liu Y Z, Qin C C, Zhang S, Zhang B 2011 Opt. Express 19 4542

    [101]

    Li S, Long J Y, Lin F, Wang Y, Song X, Zhang B 2017 J. Chem. Phys. 147 044309

    [102]

    Bartels R A, Weinacht T C, Wagner N, Baertschy M, Greene C H, Murnane M M, Kapteyn H C 2002 Phys. Rev. Lett. 88 013903

    [103]

    Spence J C H, Schmidt K, Wu J S, Hembree G, Weierstall U, Doak B, Fromme P 2005 Acta Crystallogr. Sect. A: Found. Crystallogr. 61 237

    [104]

    Peterson E R, Buth C, Arms D A, Dunford R W, Kanter E P, Krassig B, Landahl E C, Pratt S T, Santra R, Southworth S H, Young L 2008 Appl. Phys. Lett. 92 094106

    [105]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [106]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D, Bandulet H C, Pepin H, Kieffer J C, Dorner R, Villeneuve D M, Corkum P B 2008 Science 320 1478

    [107]

    Kanai T, Minemoto S, Sakai H 2005 Nature 435 470

    [108]

    Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C, Velotta R 2005 Phys. Rev. Lett. 95 153902

    [109]

    Viftrup S S, Kumarappan V, Holmegaard L, Bisgaard C Z, Stapelfeldt H, Artamonov M, Hamilton E, Seideman T 2009 Phys. Rev. A 79 023404

    [110]

    Mairesse Y, Haessler S, Fabre B, Higuet J, Boutu W, Breger P, Constant E, Descamps D, Mevel E, Petit S, Salieres P 2008 New J. Phys. 10 025028

    [111]

    Ramakrishna S, Seideman T 2007 Phys. Rev. Lett. 99 103001

    [112]

    Poulsen M D, Peronne E, Stapelfeldt H, Bisgaard C Z, Viftrup S S, Hamilton E, Seideman T 2004 J. Chem. Phys. 121 783

    [113]

    Lee K F, Villeneuve D M, Corkum P B, Stolow A, Underwood J G 2006 Phys. Rev. Lett. 97 173001

    [114]

    Ramakrishna S, Seideman T 2005 Phys. Rev. Lett. 95 113001

    [115]

    Reuter M G, Sukharev M, Seideman T 2008 Phys. Rev. Lett. 101 208303

    [116]

    Spence J C H, Doak R B 2004 Phys. Rev. Lett. 92 198102

    [117]

    Qin C C, Liu Y Z, Zhang S, Wang Y M, Tang Y, Zhang B 2011 Phys. Rev. A 83 033423

    [118]

    Long J Y, Qin C C, Liu Y Z, Zhang S, Zhang B 2011 Phys. Rev. A 84 063409

    [119]

    Wang Y, Liu Z, Xu Y, Zhang B 2015 J. Chem. Phys. 143 064304

    [120]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897

    [121]

    Dantus M, Zewail A H 2004 Chem. Rev. 104 1717

    [122]

    Xu Y, Qiu X, Abulimiti B, Wang Y, Tang Y, Zhang B 2012 Chem. Phys. Lett. 554 53

    [123]

    Wang Y M, Shen H, Hua L Q, Hu C J, Zhang B 2009 Opt. Express 17 10506

    [124]

    Hu C, Wang L, Wang Y, Tang Y, Long J, Zhang B 2016 Chem. Phys. Lett. 658 134

    [125]

    Lin F, Li S, Song X, Tang Y, Wang Y, Zhang B 2017 Phys. Rev. A 95 043421

    [126]

    Lin F, Li S, Song X, Wang Y, Long J Y, Zhang B 2017 Sci. Rep. 7 15362

  • [1] 魏志远, 胡勇, 曾令勇, 李泽宇, 乔振华, 罗惠霞, 何俊峰. 1T-NbSeTe电子结构的角分辨光电子能谱. 物理学报, 2022, 71(12): 127901. doi: 10.7498/aps.71.20220458
    [2] 沈环, 华林强, 魏政荣. 尿嘧啶激发态动力学溶剂效应的飞秒瞬态吸收光谱研究. 物理学报, 2022, 71(18): 184206. doi: 10.7498/aps.71.20220515
    [3] 季佩宇, 黄天源, 陈佳丽, 诸葛兰剑, 吴雪梅. 螺旋波等离子体制备多种碳基薄膜原位诊断研究. 物理学报, 2021, 70(9): 097201. doi: 10.7498/aps.70.20201809
    [4] 郑镇法, 蒋翔, 褚维斌, 张丽丽, 郭宏礼, 赵传寓, 王亚南, 王傲雷, 郑奇靖, 赵瑾. 凝聚态体系中激发态载流子动力学研究. 物理学报, 2021, 70(17): 177101. doi: 10.7498/aps.70.20210626
    [5] 向梅, 凌丰姿, 邓绪兰, 魏洁, 布玛丽亚∙阿布力米提, 张冰. 苯乙炔分子电子激发态超快动力学研究. 物理学报, 2021, 70(5): 053302. doi: 10.7498/aps.70.20201473
    [6] 布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰. 2-甲基吡嗪分子激发态系间交叉过程的飞秒时间分辨光电子影像研究. 物理学报, 2020, 69(10): 103301. doi: 10.7498/aps.69.20200092
    [7] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [8] 沈环, 胡春龙, 邓绪兰. 超短脉冲激光场中间二氯苯的激发态动力学. 物理学报, 2017, 66(15): 157801. doi: 10.7498/aps.66.157801
    [9] 冯小静, 郭玮, 路兴强, 姚洪斌, 李月华. 三态K2分子飞秒含时光电子能谱的理论研究. 物理学报, 2015, 64(14): 143303. doi: 10.7498/aps.64.143303
    [10] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究. 物理学报, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [11] 张敏, 唐田田, 张朝民. NaLi分子飞秒含时光电子能谱的理论研究. 物理学报, 2014, 63(2): 023302. doi: 10.7498/aps.63.023302
    [12] 郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东. 高气压直流辉光CH4/H2等离子体的气相过程诊断. 物理学报, 2013, 62(16): 165204. doi: 10.7498/aps.62.165204
    [13] 赵晓辉, 马 菲, 吴义室, 艾希成, 张建平. 飞秒时间分辨拉曼光谱用于研究β-胡萝卜素单重激发态内转换和振动弛豫过程. 物理学报, 2008, 57(1): 298-306. doi: 10.7498/aps.57.298
    [14] 曹 宁, 龙拥兵, 张治国, 高丽娟, 袁 洁, 赵伯儒, 赵士平, 杨乾生, 赵继民, 傅盘铭. 电子型掺杂高温超导体La2-xCexCuO4飞秒时间分辨动力学研究. 物理学报, 2008, 57(4): 2543-2547. doi: 10.7498/aps.57.2543
    [15] 王晓雄, 李宏年. Sm富勒烯的芯态光电子能谱. 物理学报, 2006, 55(8): 4259-4264. doi: 10.7498/aps.55.4259
    [16] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [17] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程. 物理学报, 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [18] 葛愉成, 李元景, 康克军. 利用超短脉冲激光和光电子能量微分谱直接测量窄带飞秒超紫外线XUV脉冲的时间结构. 物理学报, 2005, 54(6): 2669-2675. doi: 10.7498/aps.54.2669
    [19] 张训生, 董峰, 鲍德松, 杜志强. NO在Cu(110)表面吸附的角分辨光电子能谱. 物理学报, 1993, 42(7): 1194-1198. doi: 10.7498/aps.42.1194
    [20] 卢学坤, 侯晓远, 丁训民, 陈平. 用角分辨紫外光电子能谱研究GaP的能带结构. 物理学报, 1990, 39(8): 108-114. doi: 10.7498/aps.39.108
计量
  • 文章访问数:  5205
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-10
  • 修回日期:  2018-08-23
  • 刊出日期:  2019-11-20

/

返回文章
返回