搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单分子尺度的光量子态调控与单分子电致发光研究

张尧 张杨 董振超

引用本文:
Citation:

单分子尺度的光量子态调控与单分子电致发光研究

张尧, 张杨, 董振超

Single-molecule electroluminescence and its relevant latest progress

Zhang Yao, Zhang Yang, Dong Zhen-Chao
PDF
导出引用
  • 分子尺度上的光电相互作用研究可以为发展未来信息和能源技术提供科学基础.扫描隧道显微镜不仅可以用来观察和操纵纳米世界中的原子和分子,而且其高度局域化的隧穿电流还可以被用来激发隧道结中的分子,使之发光,以研究局域场下的分子光电特性.本文综述了中国科学技术大学单分子光电研究组近期在锌酞菁分子电致发光方面取得的科学进展,包括:1)利用有效的电子脱耦合与纳腔等离激元调控技术,实现了隧穿电子激发下的单个锌酞菁分子的电致荧光,并通过发展相关的光子发射统计测量方法,表征了单个分子在隧穿电子激发下的电致荧光具有单光子发射特性;2)发展了具有亚纳米空间分辨的荧光光谱成像技术,实现了对酞菁分子间相干偶极相互作用特征的实空间观察;3)对分子与纳腔等离激元之间的相干耦合作用进行了亚纳米精度的操控,在单分子水平上观察到了法诺共振和兰姆位移效应.这些研究结果不仅为研发基于有机分子的电泵纳米光源与单光子光源等分子光电器件提供了新的思路,而且为在单分子尺度上研究分子光电特性、分子间能量转移以及场与物质之间的相互作用规律等提供了新的表征方法.
    Research on the interaction and interconversion between electrons and photons on an individual molecular scale can provide scientific basis for the future developing of information and energy technology. Scanning tunneling microscope(STM) can offer abilities beyond atomic-resolution imaging and manipulation, and its highly localized tunneling electrons can also be used for exciting the molecules inside the tunnel junction, generating molecule-specific light emission, and thus enabling the investigation of molecular optoelectronic behavior in local nano-environment. In this paper, we present an overview of our recent research progress related to the single-molecule electroluminescence of zinc phthalocyanine (ZnPc) molecules. First, we demonstrate the realization of single-molecule electroluminescence from an isolated ZnPc by adopting a combined strategy of both efficient electronic decoupling and nanocavity plasmonic enhancement. By further combining the photon correlation measurements via the Hanbury-Brown-Twiss interferometry with STM induced luminescence technique, we demonstrate and confirm the single-photon emission nature of such an electrically driven single-molecule electroluminescence. Second, by developing the sub-nanometer resolved electroluminescence imaging technique, we demonstrate the real-space visualization of the coherent intermolecular dipole-dipole coupling of an artificially constructed non-bonded ZnPc dimer. By mapping the spatial distribution of the photon yield for the excitonic coupling in a well-defined molecular architecture, we can reveal the local optical response of the system and the dependence of the local optical response on the relative orientation and phase of the transition dipoles of the individual molecules in the dimer. Third, by using a single molecular emitter as a distinctive optical probe to coherently couple with the highly confined plasmonic nanocavity, we demonstrate the Fano resonance and photonic Lamb shift at a single-molecule level. The ability to spatially control the single-molecule Fano resonance with sub-nanometer precision can reveal the coherent and highly confined nature of the broadband nanocavity plasmon, as well as the coupling strength and the anisotropy of the field-matter interaction. These results not only shed light on the fabrication of electrically driven nano-emitters and single-photon sources, but also open up a new avenue to the study of intermolecular energy transfer, field-matter interaction, and molecular optoelectronics, all at the single-molecule level.
      通信作者: 董振超, zcdong@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0200601)、国家重点基础研究发展计划(批准号:2011CB921402)、国家自然科学基金(批准号:91021004,11327805,21333010,91421314,21790352)、中国科学院战略性先导科技专项(批准号:XDB01020200)和安徽省引导性项目(分子量子精密测量)(批准号:AHY090100)资助的课题.
      Corresponding author: Dong Zhen-Chao, zcdong@ustc.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921402, 2016YFA0200601), the National Natural Science Foundation of China (Grant Nos. 91021004, 11327805, 21333010, 91421314, 21790352), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB01020200), and the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY090100).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Ozbay E 2006 Science 311 189

    [3]

    Lee T H, Gonzalez J I, Zheng J, Dickson R M 2005 Acc. Chem. Res. 38 534

    [4]

    Lee T H, Gonzalez J I, Dickson R M 2002 Proc. Natl. Acad. Sci. USA 99 10272

    [5]

    Gonzalez J I, Vosch T, Dickson R M 2006 Phys. Rev. B 74 064305

    [6]

    Duan X, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241

    [7]

    Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris P 2005 Science 310 1171

    [8]

    Misewich J A, Martel R, Avouris Ph. Tsang J C, Heinze S, Tersoff J 2003 Science 300 783

    [9]

    Marquardt C W, Grunder S, Błaszczyk A, Dehm S, Hennrich F, Löhneysen H V, Mayor M, Krupke R 2010 Nat. Nanotechnol. 5 863

    [10]

    Gimzewski J K, Sass J K, Schlitter R R, Schott J 1989 Europhys. Lett. 8 435

    [11]

    Berndt R, Gaisch R, Gimzewski J K, Reihl B, Schlittler R R, Schneider W D, Tschudy M 1993 Science 262 1425

    [12]

    Qiu X H, Nazin G V, Ho W 2003 Science 299 542

    [13]

    Chen C, Chu P, Bobisch C A, Mills D L, Ho W 2010 Phys. Rev. Lett. 105 217402

    [14]

    Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623

    [15]

    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2016 Nature 538 364

    [16]

    Doppagne B, Chong M C, Bulou H, Boeglin A, Scheurer F, Schull G 2018 Science 361 251

    [17]

    Kuhnke K, Große C, Merino P, Kern K 2017 Chem. Rev. 117 5174

    [18]

    Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2010 Nat. Photon. 4 50

    [19]

    Dong Z C, Guo X L, Trifonov A S, Dorozhkin P S, Miki K, Kimura K, Yokoyama S, Mashiko S 2004 Phys. Rev. Lett. 92 086801

    [20]

    Zhang L, Yu Y J, Chen L G, Luo Y, Yang B, Kong F F, Chen G, Zhang Y, Zhang Q, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 580

    [21]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225

    [22]

    Ćavar E, Blm M C, Pivetta M, Patthey F, Chergui M, Schneider W D 2005 Phys. Rev. Lett. 95 196102

    [23]

    Zhu S E, Kuang Y M, Geng F, Zhu J Z, Wang C Z, Yu Y J, Luo Y, Xiao Y, Liu K Q, Meng Q S, Zhang L, Jiang S, Zhang Y, Wang G W, Dong Z C, Hou J G 2013 J. Am. Chem. Soc. 135 15794

    [24]

    Chong M C, Reecht G, Bulou H, Boeglin H A, Scheurer F, Mathevet F, Schull G 2016 Phys. Rev. Lett. 116 036802

    [25]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257

    [26]

    Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707

    [27]

    Vardi Y, Cohen-Hoshen E, Shalem G, Bar-Joseph I 2016 Nano Lett. 16 748

    [28]

    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2017 Phys. Rev. Lett. 119 013901

    [29]

    Zhang Y, Zhang Y, Dong Z C 2018 AAPPS Bull. 28 19

    [30]

    Nothaft M, Höhla S, Jelezko F, Frhauf N, Pflaum J, Wrachtrup J 2012 Nat. Commun. 3 628

    [31]

    Perronet K, Schull G, Raimond P, Charra F 2006 Europhys. Lett. 74 313

    [32]

    Silly F, Charra F 2000 Appl. Phys. Lett. 77 3648

    [33]

    Barnes W L 1998 J. Mod. Opt. 45 661

    [34]

    Merino P, Große C, Rosßawska A, Kuhnke K, Kern K 2015 Nat. Commun. 6 8461

    [35]

    Rezus Y L A, Walt S G, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601

    [36]

    Iwasaki T, Ishibashi F, Miyamoto Y, Doi Y, Kobayashi S, Miyazaki T, Tahara K, Jahnke K D, Rogers L J, Naydenov B, Jelezko F, Yamasaki S, Nagamachi S, Inubushi T, Mizuochi N, Hatano M 2015 Sci. Rep. 5 12882

    [37]

    Vlaming S M, Eisfeld A 2014 J. Phys. D: Appl. Phys. 47 305301

    [38]

    Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371

    [39]

    Krishna V, Tully J C 2006 J. Chem. Phys. 125 054706

    [40]

    Yao P, Vlack C V, Reza A, Patterson M, Dignam M M, Hughes S 2009 Phys. Rev. 80 195106

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Ozbay E 2006 Science 311 189

    [3]

    Lee T H, Gonzalez J I, Zheng J, Dickson R M 2005 Acc. Chem. Res. 38 534

    [4]

    Lee T H, Gonzalez J I, Dickson R M 2002 Proc. Natl. Acad. Sci. USA 99 10272

    [5]

    Gonzalez J I, Vosch T, Dickson R M 2006 Phys. Rev. B 74 064305

    [6]

    Duan X, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241

    [7]

    Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris P 2005 Science 310 1171

    [8]

    Misewich J A, Martel R, Avouris Ph. Tsang J C, Heinze S, Tersoff J 2003 Science 300 783

    [9]

    Marquardt C W, Grunder S, Błaszczyk A, Dehm S, Hennrich F, Löhneysen H V, Mayor M, Krupke R 2010 Nat. Nanotechnol. 5 863

    [10]

    Gimzewski J K, Sass J K, Schlitter R R, Schott J 1989 Europhys. Lett. 8 435

    [11]

    Berndt R, Gaisch R, Gimzewski J K, Reihl B, Schlittler R R, Schneider W D, Tschudy M 1993 Science 262 1425

    [12]

    Qiu X H, Nazin G V, Ho W 2003 Science 299 542

    [13]

    Chen C, Chu P, Bobisch C A, Mills D L, Ho W 2010 Phys. Rev. Lett. 105 217402

    [14]

    Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623

    [15]

    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2016 Nature 538 364

    [16]

    Doppagne B, Chong M C, Bulou H, Boeglin A, Scheurer F, Schull G 2018 Science 361 251

    [17]

    Kuhnke K, Große C, Merino P, Kern K 2017 Chem. Rev. 117 5174

    [18]

    Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, Hou J G 2010 Nat. Photon. 4 50

    [19]

    Dong Z C, Guo X L, Trifonov A S, Dorozhkin P S, Miki K, Kimura K, Yokoyama S, Mashiko S 2004 Phys. Rev. Lett. 92 086801

    [20]

    Zhang L, Yu Y J, Chen L G, Luo Y, Yang B, Kong F F, Chen G, Zhang Y, Zhang Q, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 580

    [21]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225

    [22]

    Ćavar E, Blm M C, Pivetta M, Patthey F, Chergui M, Schneider W D 2005 Phys. Rev. Lett. 95 196102

    [23]

    Zhu S E, Kuang Y M, Geng F, Zhu J Z, Wang C Z, Yu Y J, Luo Y, Xiao Y, Liu K Q, Meng Q S, Zhang L, Jiang S, Zhang Y, Wang G W, Dong Z C, Hou J G 2013 J. Am. Chem. Soc. 135 15794

    [24]

    Chong M C, Reecht G, Bulou H, Boeglin H A, Scheurer F, Mathevet F, Schull G 2016 Phys. Rev. Lett. 116 036802

    [25]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257

    [26]

    Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707

    [27]

    Vardi Y, Cohen-Hoshen E, Shalem G, Bar-Joseph I 2016 Nano Lett. 16 748

    [28]

    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2017 Phys. Rev. Lett. 119 013901

    [29]

    Zhang Y, Zhang Y, Dong Z C 2018 AAPPS Bull. 28 19

    [30]

    Nothaft M, Höhla S, Jelezko F, Frhauf N, Pflaum J, Wrachtrup J 2012 Nat. Commun. 3 628

    [31]

    Perronet K, Schull G, Raimond P, Charra F 2006 Europhys. Lett. 74 313

    [32]

    Silly F, Charra F 2000 Appl. Phys. Lett. 77 3648

    [33]

    Barnes W L 1998 J. Mod. Opt. 45 661

    [34]

    Merino P, Große C, Rosßawska A, Kuhnke K, Kern K 2015 Nat. Commun. 6 8461

    [35]

    Rezus Y L A, Walt S G, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601

    [36]

    Iwasaki T, Ishibashi F, Miyamoto Y, Doi Y, Kobayashi S, Miyazaki T, Tahara K, Jahnke K D, Rogers L J, Naydenov B, Jelezko F, Yamasaki S, Nagamachi S, Inubushi T, Mizuochi N, Hatano M 2015 Sci. Rep. 5 12882

    [37]

    Vlaming S M, Eisfeld A 2014 J. Phys. D: Appl. Phys. 47 305301

    [38]

    Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371

    [39]

    Krishna V, Tully J C 2006 J. Chem. Phys. 125 054706

    [40]

    Yao P, Vlack C V, Reza A, Patterson M, Dignam M M, Hughes S 2009 Phys. Rev. 80 195106

  • [1] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 基于微尺度光学偶极阱的一维单原子阵列的实验制备. 物理学报, 2024, 73(10): 103701. doi: 10.7498/aps.73.20240135
    [2] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统. 物理学报, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [3] 余桂芳, 李志浩, 肖天琦, 冯田峰, 周晓祺. 基于薄膜铌酸锂的模式色散相位匹配单光子源. 物理学报, 2023, 72(15): 154204. doi: 10.7498/aps.72.20230743
    [4] 田晓俊, 孔繁芳, 经士浩, 郁云杰, 张尧, 张杨, 董振超. 单分子瞬时带电态中电子-振动耦合特性的亚纳米荧光成像研究. 物理学报, 2022, 71(6): 063301. doi: 10.7498/aps.71.20212003
    [5] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用. 物理学报, 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [6] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [7] 尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 牛智川. 量子点单光子源的光纤耦合. 物理学报, 2021, 70(8): 087801. doi: 10.7498/aps.70.20201605
    [8] 吴瑞祥, 张国峰, 乔志星, 陈瑞云. 外电场操控单分子的偶极取向极化特性研究. 物理学报, 2019, 68(12): 128201. doi: 10.7498/aps.68.20190361
    [9] 刘贝, 靳刚, 何军, 王军民. 基于微型光学偶极阱中单个铯原子俘获与操控的852 nm触发式单光子源. 物理学报, 2016, 65(23): 233701. doi: 10.7498/aps.65.233701
    [10] 李睿. 准一维半导体量子点中电偶极自旋共振的物理机理. 物理学报, 2015, 64(16): 167303. doi: 10.7498/aps.64.167303
    [11] 王成, 许鹏, 何晓东, 王谨, 詹明生. 单原子在两个远红失谐光偶极阱中的转移. 物理学报, 2012, 61(20): 203701. doi: 10.7498/aps.61.203701
    [12] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究. 物理学报, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [13] 马海强, 李林霞, 王素梅, 吴张斌, 焦荣珍. 一种全光纤型观测光波粒二象性的方法. 物理学报, 2010, 59(1): 75-79. doi: 10.7498/aps.59.75
    [14] 张国峰, 程峰钰, 贾锁堂, 孙建虎, 肖连团, 张芳. 室温单分子偶极取向与量子化再取向动力学实验研究. 物理学报, 2009, 58(4): 2364-2368. doi: 10.7498/aps.58.2364
    [15] 陈微, 邢名欣, 任刚, 王科, 杜晓宇, 张冶金, 郑婉华. 光子晶体微腔中高偏振单偶极模的研究. 物理学报, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [16] 马海强, 王素梅, 吴令安. 基于偏振纠缠光子对的单光子源. 物理学报, 2009, 58(2): 717-721. doi: 10.7498/aps.58.717
    [17] 王晓波, 黄 涛, 邵军虎, 降雨强, 肖连团, 贾锁堂. 利用光子统计概率测量单分子光子源的信号背景比. 物理学报, 2005, 54(2): 617-621. doi: 10.7498/aps.54.617
    [18] 夏佑林, 叶朝辉. 14N核四极共振中自旋锁定的偏共振效应. 物理学报, 1995, 44(6): 970-976. doi: 10.7498/aps.44.970
    [19] 詹佑邦. 非共振双光子Jaynes-Cummings模型中原子的偶极压缩. 物理学报, 1994, 43(6): 895-903. doi: 10.7498/aps.43.895
    [20] 夏佑林, 叶朝辉. 14N核四极共振的偏共振效应. 物理学报, 1994, 43(8): 1371-1379. doi: 10.7498/aps.43.1371
计量
  • 文章访问数:  7254
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-16
  • 修回日期:  2018-10-26
  • 刊出日期:  2019-11-20

/

返回文章
返回