搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单原子在两个远红失谐光偶极阱中的转移

王成 许鹏 何晓东 王谨 詹明生

引用本文:
Citation:

单原子在两个远红失谐光偶极阱中的转移

王成, 许鹏, 何晓东, 王谨, 詹明生

Transferring single-atoms between two red-detuned far-off-resonance optical dipole traps

Wang Cheng, Xu Peng, He Xiao-Dong, Wang Jin, Zhan Ming-Sheng
PDF
导出引用
  • 在光偶极阱中实现单个中性原子的囚禁及其操控在量子信息处理中具有重要的应用. 为此在使用强聚焦远红失谐激光形成的光偶极阱囚禁单个中性铷原子后, 通过一个空间可移动的光偶极阱从静止的光偶极阱上掠过,实现了将静止的光偶极阱中的单原子以94% 的概率转移到可移动的光偶极阱中,并将该原子移动到焦平面上指定的位置. 该实验对于实现光偶极阱阵列中任意两个原子的纠缠以及光偶极阱中原子外在自由度的操控等 研究有着潜在的应用.
    The preparation and manipulation of single neutral atoms in optical dipole traps have important applications in quantum simulation and information. For this purpose, a single neutral atom, trapped in a static optical dipole trap which is formed by a strongly focused red-detuned far-off-resonance laser, can be transferred to a movable optical dipole trap when the movable trap crosses the static trap and the transfer efficiency can reach about 94%, meanwhile this transferred atom could be located at given position in the focal plane. This experimental result has potential applications in realizing entanglement of two individual neutral atoms in an optical dipole trap array.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB922101)和国家自然科学基金(批准号: 11104320, 11104321)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB922101) and the National Natural Science Foundation of China (Grant Nos. 11104320, 11104321).
    [1]

    Schlosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024

    [2]

    Xu P, He X D, Wang J, Zhan M S 2010 Opt. Lett. 35 2164

    [3]

    Darquie B, Jones M P A, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G, Browaeys A, Grangier P 2005 Science 309 454

    [4]

    Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C, Weinfurter H 2006 Phys. Rev. Lett. 96 030404

    [5]

    Schrader D, Dotsenko I, Khudaverdyan M, Miroshnychenko Y, Rauschenbeutel A, Meschede D 2004 Phys. Rev. Lett. 93 150501

    [6]

    Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D, Widera A 2009 Science 325 174

    [7]

    Johnson T A, Urban E, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2008 Phys. Rev. Lett. 100 113003

    [8]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nat. Phys. 5 110

    [9]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [10]

    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502

    [11]

    Blatt R, Wineland D 2008 Nature 453 1008

    [12]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [13]

    Li X Q, Wu Y W, Steel D, Gammon D, Stievater T H, Katzer D S, Park D, Piermarocchi C, Sham L J 2003 Science 301 809

    [14]

    Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180

    [15]

    Zhou Z W, Tu T, Gong M, Li C F, Hu Y, Yang Y, Guo G C 2009 Prog. Phys. 29 127 (in Chinese) [周正威, 涂涛, 龚明, 李传锋, 胡勇, 杨勇, 郭光灿 2009 物理学进展 29 127]

    [16]

    Frese D, Uberholz B, Kuhr S, Alt W, Schrader D, Gomer V, Meschede D 2000 Phys. Rev. Lett. 85 3777

    [17]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [18]

    Stöferle T, Moritz H, Schori C, Köhl M, Esslinger T 2004 Phys. Rev. Lett. 92 130403

    [19]

    Spielman I B, Phillips W D, Porto J V 2007 Phys. Rev. Lett. 98 080404

    [20]

    Mandel O, Greiner M, Widera A, Rom T, Hänsch T W, Bloch I 2003 Nature 425 937

    [21]

    Kuhr S, Alt W, Schrader D, Müller M, Gomer V, Meschede D 2001 Science 293 278

    [22]

    He X D, Xu P, Wang J, Zhan M S 2009 Opt. Express 17 21007

    [23]

    Miroshnychenko Y, Alt W, Dotsenko I, Förster L, Khudaverdyan M, Meschede D, Reick S, Rauschenbeutel A 2006 Phys. Rev. Lett. 97 243003

    [24]

    Beugnon J, Tuchendler C, Marion H, Gaëtan A, Miroshnychenko Y, Sortais Y R P, Lance A M, Jones M P A, Messin G, Browaeys A, Grangier P 2007 Nat. Phys. 3 696

    [25]

    Liu T, Zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 物理学报 53 1346]

    [26]

    Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005

    [27]

    He X D, Yu S, Xu P, Wang J, Zhan M S 2012 Opt. Express 20 3711

    [28]

    Weitenberg C, Endres M, Sherson J F, Cheneau M, Schauβ P, Fukuhara T, Bloch I, Kuhr S 2011 Nature 471 319

  • [1]

    Schlosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024

    [2]

    Xu P, He X D, Wang J, Zhan M S 2010 Opt. Lett. 35 2164

    [3]

    Darquie B, Jones M P A, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G, Browaeys A, Grangier P 2005 Science 309 454

    [4]

    Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C, Weinfurter H 2006 Phys. Rev. Lett. 96 030404

    [5]

    Schrader D, Dotsenko I, Khudaverdyan M, Miroshnychenko Y, Rauschenbeutel A, Meschede D 2004 Phys. Rev. Lett. 93 150501

    [6]

    Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D, Widera A 2009 Science 325 174

    [7]

    Johnson T A, Urban E, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2008 Phys. Rev. Lett. 100 113003

    [8]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nat. Phys. 5 110

    [9]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [10]

    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502

    [11]

    Blatt R, Wineland D 2008 Nature 453 1008

    [12]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [13]

    Li X Q, Wu Y W, Steel D, Gammon D, Stievater T H, Katzer D S, Park D, Piermarocchi C, Sham L J 2003 Science 301 809

    [14]

    Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180

    [15]

    Zhou Z W, Tu T, Gong M, Li C F, Hu Y, Yang Y, Guo G C 2009 Prog. Phys. 29 127 (in Chinese) [周正威, 涂涛, 龚明, 李传锋, 胡勇, 杨勇, 郭光灿 2009 物理学进展 29 127]

    [16]

    Frese D, Uberholz B, Kuhr S, Alt W, Schrader D, Gomer V, Meschede D 2000 Phys. Rev. Lett. 85 3777

    [17]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [18]

    Stöferle T, Moritz H, Schori C, Köhl M, Esslinger T 2004 Phys. Rev. Lett. 92 130403

    [19]

    Spielman I B, Phillips W D, Porto J V 2007 Phys. Rev. Lett. 98 080404

    [20]

    Mandel O, Greiner M, Widera A, Rom T, Hänsch T W, Bloch I 2003 Nature 425 937

    [21]

    Kuhr S, Alt W, Schrader D, Müller M, Gomer V, Meschede D 2001 Science 293 278

    [22]

    He X D, Xu P, Wang J, Zhan M S 2009 Opt. Express 17 21007

    [23]

    Miroshnychenko Y, Alt W, Dotsenko I, Förster L, Khudaverdyan M, Meschede D, Reick S, Rauschenbeutel A 2006 Phys. Rev. Lett. 97 243003

    [24]

    Beugnon J, Tuchendler C, Marion H, Gaëtan A, Miroshnychenko Y, Sortais Y R P, Lance A M, Jones M P A, Messin G, Browaeys A, Grangier P 2007 Nat. Phys. 3 696

    [25]

    Liu T, Zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 物理学报 53 1346]

    [26]

    Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005

    [27]

    He X D, Yu S, Xu P, Wang J, Zhan M S 2012 Opt. Express 20 3711

    [28]

    Weitenberg C, Endres M, Sherson J F, Cheneau M, Schauβ P, Fukuhara T, Bloch I, Kuhr S 2011 Nature 471 319

  • [1] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应. 物理学报, 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [2] 吴瑞祥, 张国峰, 乔志星, 陈瑞云. 外电场操控单分子的偶极取向极化特性研究. 物理学报, 2019, 68(12): 128201. doi: 10.7498/aps.68.20190361
    [3] 王晓锋, 李玉清, 冯国胜, 武寄洲, 马杰, 肖连团, 贾锁堂. 基于磁悬浮大体积交叉光学偶极阱的Dimple光阱装载研究. 物理学报, 2016, 65(8): 083701. doi: 10.7498/aps.65.083701
    [4] 任瑞敏, 尹亚玲, 王志章, 郭超修, 印建平. 亚微米局域空心光束的产生及其在单原子囚禁与冷却中的应用理论研究. 物理学报, 2016, 65(11): 114101. doi: 10.7498/aps.65.114101
    [5] 刘贝, 靳刚, 何军, 王军民. 基于微型光学偶极阱中单个铯原子俘获与操控的852 nm触发式单光子源. 物理学报, 2016, 65(23): 233701. doi: 10.7498/aps.65.233701
    [6] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [7] 王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民. 磁光阱中单原子荧光信号的优化及单原子的高效装载. 物理学报, 2014, 63(5): 053202. doi: 10.7498/aps.63.053202
    [8] 刁文婷, 何军, 刘贝, 王杰英, 王军民. 利用蓝失谐激光诱导微型光学偶极阱中冷原子间的光助碰撞提高单原子制备概率. 物理学报, 2014, 63(2): 023701. doi: 10.7498/aps.63.023701
    [9] 余学才, 汪平和, 张利勋. 光晶格动量依赖偶极势中原子运动. 物理学报, 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [10] 潘长宁, 赵学辉, 杨迪武, 方卯发. 耗散环境下原子-库场相互作用系统中原子的偶极压缩特性. 物理学报, 2010, 59(10): 6814-6818. doi: 10.7498/aps.59.6814
    [11] 陈微, 邢名欣, 任刚, 王科, 杜晓宇, 张冶金, 郑婉华. 光子晶体微腔中高偏振单偶极模的研究. 物理学报, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [12] 刘会平, 陈熙萌, 刘兆远, 丁宝卫, 邵剑雄, 崔 莹, 鲁彦霞, 高志民, 刘玉文, 杜 娟, 孙光智, 席发元, 王兴安, 娄凤君. 中低速C3+与He,Ne,Ar原子相互作用过程中单电子转移绝对截面的测量. 物理学报, 2008, 57(12): 7606-7611. doi: 10.7498/aps.57.7606
    [13] 刘会平, 陈熙萌, 刘兆远, 高志民, 刘玉文, 杜 娟, 张红强, 孙光智, 王 俊, 席发元, 王 媛. 中速C3+与Ne原子靶相互作用过程中单电子转移绝对截面的测量. 物理学报, 2008, 57(8): 4846-4850. doi: 10.7498/aps.57.4846
    [14] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用. 物理学报, 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [15] 林继成, 郑小虎, 曹卓良. Kerr介质中双模纠缠相干光与Bell态原子相互作用系统的原子偶极压缩. 物理学报, 2007, 56(2): 837-844. doi: 10.7498/aps.56.837
    [16] 周蜀渝, 徐 震, 周善钰, 王育竹. 以慢原子束方式进行原子转移的双磁光阱系统. 物理学报, 2007, 56(1): 165-169. doi: 10.7498/aps.56.165
    [17] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获. 物理学报, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [18] 谢瑞华. 二能级系统中光场压缩与原子偶极压缩间的对称特性. 物理学报, 1996, 45(9): 1463-1478. doi: 10.7498/aps.45.1463
    [19] 李高翔, 彭金生. 论Jsynes-Cummings模型中原子偶极压缩和光场压缩间的关联. 物理学报, 1995, 44(10): 1670-1678. doi: 10.7498/aps.44.1670
    [20] 吴式枢. 原子核的单粒位阱(Ⅰ)——一个定理. 物理学报, 1976, 25(5): 433-443. doi: 10.7498/aps.25.433
计量
  • 文章访问数:  4266
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-09
  • 修回日期:  2012-05-04
  • 刊出日期:  2012-10-05

单原子在两个远红失谐光偶极阱中的转移

  • 1. 中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室, 武汉 430071;
  • 2. 中国科学院冷原子物理中心, 武汉 430071;
  • 3. 中国科学院大学, 北京 100049
    基金项目: 国家重点基础研究发展计划(批准号: 2012CB922101)和国家自然科学基金(批准号: 11104320, 11104321)资助的课题.

摘要: 在光偶极阱中实现单个中性原子的囚禁及其操控在量子信息处理中具有重要的应用. 为此在使用强聚焦远红失谐激光形成的光偶极阱囚禁单个中性铷原子后, 通过一个空间可移动的光偶极阱从静止的光偶极阱上掠过,实现了将静止的光偶极阱中的单原子以94% 的概率转移到可移动的光偶极阱中,并将该原子移动到焦平面上指定的位置. 该实验对于实现光偶极阱阵列中任意两个原子的纠缠以及光偶极阱中原子外在自由度的操控等 研究有着潜在的应用.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回