搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场操控单分子的偶极取向极化特性研究

吴瑞祥 张国峰 乔志星 陈瑞云

引用本文:
Citation:

外电场操控单分子的偶极取向极化特性研究

吴瑞祥, 张国峰, 乔志星, 陈瑞云

Dipole orientation polarization property of single-molecule manipulated by external electric field

Wu Rui-Xiang, Zhang Guo-Feng, Qiao Zhi-Xing, Chen Rui-Yun
PDF
HTML
导出引用
  • 单分子偶极取向的有效操控对于提高单分子荧光收集效率及荧光共振能量转移等相关研究具有重要的意义. 本文通过测量单分子荧光偏振特性的变化, 研究了外部电场作用下极性单分子的偶极取向极化特性, 实现了外电场对单分子偶极取向的有效操控. 研究发现电场方向与单分子样品表面平行时, 掺杂在聚甲基丙烯酸甲酯聚合物薄膜中的取向随机分布的极性单分子荧光偏振方向呈现出双峰统计分布规律, 表明在溶剂挥发过程中外电场诱导极性单分子偶极取向进行了重新分布.
    The dipole orientation of single-molecule plays an important role in improving the fluorescence collection efficiency and promises to have applications in super-resolution imaging, protein folding, and Förster resonance energy transfer between fluorophores. However, these applications are realized usually by precisely manipulating the orientation of the dipole moment of single molecules. Here, the dipole orientation of 1,1′-dioctadecyl-3,3,3′,3′,-tetramethylindodicarbocyanine (DiD) single molecules with the permanent dipole moment of 14.9 D is manipulated by using an external electric field of 3500 V/mm. Single DiD molecules are prepared by using mixed solvent of chloroform and dimethyl sulfoxide. The dipole orientation of single molecules is manipulated by an external electric field during the evaporation of solvent. The fluorescence of single molecules is measured by splitting the fluorescence collected by an objective into the S-polarized and P-polarized beams, and the fluorescence polarization of single molecules can be calculated by measuring the intensities of two orthogonal channels (IS and IP). The distribution of dipole orientation angle (α) for single DiD molecules in poly-(methyl methacrylate) (PMMA) film is analyzed statistically, and its changes are compared under different electric fields. It is found that the dipole orientation angle α of single DiD molecules in the PMMA film without applying electric field obeys a single-peak Gaussian distribution with the most probable value of 41°, which results from the fluorescence dichroism signal of the high numerical aperture objective. Applying a perpendicular electric field to the surface of single-molecule sample, the distribution of dipole orientation angle α of single DiD molecules can be still fitted by a single-peak Gaussian function with the most probable value of 44.2°. The dipole orientation of single DiD molecules under the perpendicular electric field changes little. However, by applying a parallel electric field to the surface of single-molecule sample, the dipole orientation angle α of single DiD molecules changes prominently. It obeys a two-peak Gaussian distribution with the most probable values of ~ 32° and 55.5°, indicating that the orientation polarization of the dipole moment occurs to the single DiD molecules in PMMA film. The dipole orientation of single polar molecules tends to the parallel electric field in this case.
      通信作者: 陈瑞云, chenry@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61805134, 11504216, 61527824, 61675119)和山西省应用基础研究计划(批准号: 201801D221016)资助的课题.
      Corresponding author: Chen Rui-Yun, chenry@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805134, 11504216, 61527824, 61675119) and the Applied Basic Research Program in Shanxi Province, China (Grant No. 201801D221016).
    [1]

    Zhang J L, Zhong J Q, Lin J D, Hu W P, Wu K, Xu G Q, Wee A T, Chen W 2015 Chem. Soc. Rev. 44 2998Google Scholar

    [2]

    Gregorio G G, Masureel M, Hilger D, Terry D S, Juette M, Zhao H, Zhou Z, Perez-Aguilar J M, Hauge M, Mathiasen S, Javitch J A, Weinstein H, Kobilka B K, Blanchard S C 2017 Nature 547 68Google Scholar

    [3]

    Benhaim M, Lee K K 2018 Cell 174 775Google Scholar

    [4]

    高岩, 陈瑞云, 吴瑞祥, 张国峰, 肖连团, 贾锁堂 2013 物理学报 62 233601Google Scholar

    Gao Y, Chen R Y, Wu R X, Zhang G F, Xiao L T, Jia S T 2013 Acta Phys. Sin. 62 233601Google Scholar

    [5]

    Ha T, Enderle T, Chemla D S, Selvin P R, Weiss S 1996 Phys. Rev. Lett. 77 3979Google Scholar

    [6]

    Backer A S, Lee M Y, Moerner W E 2016 Optica 3 659Google Scholar

    [7]

    Sikorski Z, Davis L M 2008 Opt. Express 16 3660Google Scholar

    [8]

    Backlund M P, Lew M D, Backer A S, Sahl S J, Moerner W E 2014 Chem. Phys. Chem. 15 587Google Scholar

    [9]

    Schroder C, Steinhauser O, Sasisanker P, Weingartner H 2015 Phys. Rev. Lett. 114 128101Google Scholar

    [10]

    Lambert C, Koch F, Volker S F, Schmiedel A, Holzapfel M, Humeniuk A, Rohr M I, Mitric R, Brixner T 2015 J. Am. Chem. Soc. 137 7851Google Scholar

    [11]

    Rezus Y L A, Walt S G, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601Google Scholar

    [12]

    Tang Z, Liao Z, Xu F, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503Google Scholar

    [13]

    Gersen H, García-Parajó M F, Novotny L, Veerman J A, Kuipers L, van Hulst N F 2000 Phys. Rev. Lett. 85 5312Google Scholar

    [14]

    Zhang G, Xiao L, Zhang F, Wang X, Jia S 2010 Phys. Chem. Chem. Phys. 12 2308Google Scholar

    [15]

    Huang Y L, Lu Y, Niu T C, Huang H, Kera S, Ueno N, Wee A T S, Chen W 2012 Small 8 1423Google Scholar

    [16]

    Zimmermann R J P, Hettich C, Gerhardt I, Renn A, Sandoghdar V 2004 Chem. Phys. Lett. 387 490Google Scholar

    [17]

    Lee K G, Chen X W, Eghlidi H, Kukura P, Lettow R, Renn A, Sandoghdar V, Götzinger S 2011 Nat. Photon. 5 166Google Scholar

    [18]

    Shaik S, Ramanan R, Danovich D, Mandal D 2018 Chem. Soc. Rev. 47 5125Google Scholar

    [19]

    Wang Z, Danovich D, Ramanan R, Shaik S 2018 J. Am. Chem. Soc. 140 13350Google Scholar

    [20]

    Sajadi M, Wolf M, Kampfrath T 2017 Nat. Commun. 8 14963Google Scholar

    [21]

    Kato C, Machida R, Maruyama R, Tsunashima R, Ren X M, Kurmoo M, Inoue K, Nishihara S 2018 Angew. Chem. Int. Ed. 57 13429Google Scholar

    [22]

    Wu R, Chen R, Qin C, Gao Y, Qiao Z, Zhang G, Xiao L, Jia S 2015 Chem. Commun. 51 7368Google Scholar

    [23]

    李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 物理学报 65 218201Google Scholar

    Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201Google Scholar

    [24]

    Wei C Y, Kim Y H, Darst R K, Rossky P J, Vandenbout D A 2005 Phys. Rev. Lett. 95 173001Google Scholar

    [25]

    Sartori S S, Feyter S D, Hofkens J, Auweraer M V, Schryver F D, Brunner K, Hofstraat J W 2003 Macromolecules 36 500Google Scholar

    [26]

    Rozhkov I, Barkai E 2005 Phys. Rev. A 71 033810Google Scholar

    [27]

    Cassone G, Giaquinta P V, Saija F, Saitta A M 2015 J. Chem. Phys. 142 054502Google Scholar

  • 图 1  (a) DiD分子的结构式, 红色箭头表示其固有偶极取向; (b)垂直于单分子样品表面电场和平行于样品表面电场操控单分子示意图

    Fig. 1.  (a) Structure of DiD dye molecule with its dipole orientation indicated by a red arrow; (b) schematic of single-molecule sample manipulated by applying a perpendicular or parallel electric field to the surface of single-molecule sample, respectively.

    图 2  DiD单分子的偶极取向与偏振测量 (a)在18 μm × 18 μm区域内DiD单分子的荧光成像; (b)任意偶极取向的DiD单分子的S偏振及P偏振方向荧光探测示意图, 其中Obj是物镜, PBS是偏振分束棱镜; (c)成像图(a)中红色圆圈标记的DiD分子的S和P偏振方向的荧光强度轨迹图; (d)荧光偏振方向α随时间的变化; (e) DiD分子光漂白前荧光偏振方向的统计, 最可几值为48.8°

    Fig. 2.  Fluorescence measurement of single DiD molecules: (a) Fluorescence image of single DiD molecules in 18 μm × 18 μm area; (b) schematic view of the S-polarized and P-polarized fluorescence of arbitrary dipole moment for single-molecule (Obj, objective; PBS, polarized beam splitter); (c) fluorescence trajectories of single DiD molecule indicated by the red circle in panel (a) in S and P polarization; (d) the relationship between fluorescence polarization and time; (e) the statistics of fluorescence polarization with the most probable value being 48.8°.

    图 3  DiD单分子在不同情况下取向极化的效果 (a)未加电场; 3500 V/mm的(b)垂直电场取向极化和(c)平行电场取向极化; 荧光的偏振方向α的统计峰值分别是 (a) 41.0° ± 21.9°, (b) 44.2° ± 26.3°, (c) 32.0° ± 13.5°和55.5° ± 21.6°

    Fig. 3.  Polarized orientation for single DiD molecules under the different conditions: (a) Non-electric field; (b) perpendicular and (c) parallel electric field of 3500 V/mm. The peaks of α are (a) 41.0° ± 21.9°, (b) 44.2° ± 26.3°, (c) 32.0° ± 13.5° and 55.5°±21.6°, respectively.

    图 4  单分子偶极取向在外电场作用下的极化示意图 (a) 电场方向与分子偶极取向同向; (b) 电场方向垂直于单分子偶极取向; (c)电场作用于任意取向单分子

    Fig. 4.  Simplified scheme of the polarization of the dipole orientation of single-molecule under the influence of external electric field. The directions of the electric field are parallel (a), perpendicular (b), and arbitrary (c) to the dipole orientation of single-molecule, respectively.

  • [1]

    Zhang J L, Zhong J Q, Lin J D, Hu W P, Wu K, Xu G Q, Wee A T, Chen W 2015 Chem. Soc. Rev. 44 2998Google Scholar

    [2]

    Gregorio G G, Masureel M, Hilger D, Terry D S, Juette M, Zhao H, Zhou Z, Perez-Aguilar J M, Hauge M, Mathiasen S, Javitch J A, Weinstein H, Kobilka B K, Blanchard S C 2017 Nature 547 68Google Scholar

    [3]

    Benhaim M, Lee K K 2018 Cell 174 775Google Scholar

    [4]

    高岩, 陈瑞云, 吴瑞祥, 张国峰, 肖连团, 贾锁堂 2013 物理学报 62 233601Google Scholar

    Gao Y, Chen R Y, Wu R X, Zhang G F, Xiao L T, Jia S T 2013 Acta Phys. Sin. 62 233601Google Scholar

    [5]

    Ha T, Enderle T, Chemla D S, Selvin P R, Weiss S 1996 Phys. Rev. Lett. 77 3979Google Scholar

    [6]

    Backer A S, Lee M Y, Moerner W E 2016 Optica 3 659Google Scholar

    [7]

    Sikorski Z, Davis L M 2008 Opt. Express 16 3660Google Scholar

    [8]

    Backlund M P, Lew M D, Backer A S, Sahl S J, Moerner W E 2014 Chem. Phys. Chem. 15 587Google Scholar

    [9]

    Schroder C, Steinhauser O, Sasisanker P, Weingartner H 2015 Phys. Rev. Lett. 114 128101Google Scholar

    [10]

    Lambert C, Koch F, Volker S F, Schmiedel A, Holzapfel M, Humeniuk A, Rohr M I, Mitric R, Brixner T 2015 J. Am. Chem. Soc. 137 7851Google Scholar

    [11]

    Rezus Y L A, Walt S G, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601Google Scholar

    [12]

    Tang Z, Liao Z, Xu F, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503Google Scholar

    [13]

    Gersen H, García-Parajó M F, Novotny L, Veerman J A, Kuipers L, van Hulst N F 2000 Phys. Rev. Lett. 85 5312Google Scholar

    [14]

    Zhang G, Xiao L, Zhang F, Wang X, Jia S 2010 Phys. Chem. Chem. Phys. 12 2308Google Scholar

    [15]

    Huang Y L, Lu Y, Niu T C, Huang H, Kera S, Ueno N, Wee A T S, Chen W 2012 Small 8 1423Google Scholar

    [16]

    Zimmermann R J P, Hettich C, Gerhardt I, Renn A, Sandoghdar V 2004 Chem. Phys. Lett. 387 490Google Scholar

    [17]

    Lee K G, Chen X W, Eghlidi H, Kukura P, Lettow R, Renn A, Sandoghdar V, Götzinger S 2011 Nat. Photon. 5 166Google Scholar

    [18]

    Shaik S, Ramanan R, Danovich D, Mandal D 2018 Chem. Soc. Rev. 47 5125Google Scholar

    [19]

    Wang Z, Danovich D, Ramanan R, Shaik S 2018 J. Am. Chem. Soc. 140 13350Google Scholar

    [20]

    Sajadi M, Wolf M, Kampfrath T 2017 Nat. Commun. 8 14963Google Scholar

    [21]

    Kato C, Machida R, Maruyama R, Tsunashima R, Ren X M, Kurmoo M, Inoue K, Nishihara S 2018 Angew. Chem. Int. Ed. 57 13429Google Scholar

    [22]

    Wu R, Chen R, Qin C, Gao Y, Qiao Z, Zhang G, Xiao L, Jia S 2015 Chem. Commun. 51 7368Google Scholar

    [23]

    李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 物理学报 65 218201Google Scholar

    Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201Google Scholar

    [24]

    Wei C Y, Kim Y H, Darst R K, Rossky P J, Vandenbout D A 2005 Phys. Rev. Lett. 95 173001Google Scholar

    [25]

    Sartori S S, Feyter S D, Hofkens J, Auweraer M V, Schryver F D, Brunner K, Hofstraat J W 2003 Macromolecules 36 500Google Scholar

    [26]

    Rozhkov I, Barkai E 2005 Phys. Rev. A 71 033810Google Scholar

    [27]

    Cassone G, Giaquinta P V, Saija F, Saitta A M 2015 J. Chem. Phys. 142 054502Google Scholar

  • [1] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 基于微尺度光学偶极阱的一维单原子阵列的实验制备. 物理学报, 2024, 73(10): 103701. doi: 10.7498/aps.73.20240135
    [2] 陈池婷, 吴磊, 王霞, 王婷, 刘延君, 蒋军, 董晨钟. B2+和B+离子的静态偶极极化率和超极化率的理论研究. 物理学报, 2023, 72(14): 143101. doi: 10.7498/aps.72.20221990
    [3] 张志鹏, 刘帅, 张玉琼, 熊影, 韩伟静, 陈同生, 王爽. 单分子磁镊旋转操控和基因转录调控动力学. 物理学报, 2023, 72(21): 218701. doi: 10.7498/aps.72.20231089
    [4] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [5] 马建兵, 翟永亮, 农大官, 李菁华, 付航, 张兴华, 李明, 陆颖, 徐春华. 基于片层光照明的新型单分子横向磁镊. 物理学报, 2018, 67(14): 148702. doi: 10.7498/aps.67.20180441
    [6] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术. 物理学报, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [7] 刘贝, 靳刚, 何军, 王军民. 基于微型光学偶极阱中单个铯原子俘获与操控的852 nm触发式单光子源. 物理学报, 2016, 65(23): 233701. doi: 10.7498/aps.65.233701
    [8] 梁腾, 马堃, 武中文, 张登红, 董晨钟, 师应龙. Xe53+离子与Xe原子碰撞过程中的辐射电子俘获和辐射退激发光谱的理论研究. 物理学报, 2016, 65(14): 143401. doi: 10.7498/aps.65.143401
    [9] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 利用单分子光学探针测量幂律分布的聚合物动力学. 物理学报, 2016, 65(21): 218201. doi: 10.7498/aps.65.218201
    [10] 李竟成, 赵爱迪, 王兵. Au(111)表面吸附单个八乙基钴卟啉分子的电子态和输运性质调控. 物理学报, 2015, 64(7): 076803. doi: 10.7498/aps.64.076803
    [11] 王成, 许鹏, 何晓东, 王谨, 詹明生. 单原子在两个远红失谐光偶极阱中的转移. 物理学报, 2012, 61(20): 203701. doi: 10.7498/aps.61.203701
    [12] 汤奇, 孟繁义, 张狂, 吴群, 李乐伟. 法拉第手征介质反射电磁波的极化特性研究. 物理学报, 2011, 60(1): 014206. doi: 10.7498/aps.60.014206
    [13] 陈微, 邢名欣, 任刚, 王科, 杜晓宇, 张冶金, 郑婉华. 光子晶体微腔中高偏振单偶极模的研究. 物理学报, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [14] 郑雨军, 张兆玉, 张西忠. 单分子体系动力学的高阶累积量相似性. 物理学报, 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [15] 张国峰, 程峰钰, 贾锁堂, 孙建虎, 肖连团, 张芳. 室温单分子偶极取向与量子化再取向动力学实验研究. 物理学报, 2009, 58(4): 2364-2368. doi: 10.7498/aps.58.2364
    [16] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰. 分子的位置取向对分子器件电输运特性的影响. 物理学报, 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [17] 韩增富, 王均宏. 并联介质加载偶极天线脉冲辐射特性的研究. 物理学报, 2005, 54(2): 642-647. doi: 10.7498/aps.54.642
    [18] 彭双艳, 黄 涛, 王晓波, 邵军虎, 肖连团, 贾锁堂. 基于光子统计测量的单分子判别. 物理学报, 2005, 54(11): 5116-5120. doi: 10.7498/aps.54.5116
    [19] 张启义, 田强. 超晶格中电场单极畴与偶极畴的形成和输运. 物理学报, 2002, 51(8): 1804-1807. doi: 10.7498/aps.51.1804
    [20] 秦伟平, 秦冠仕, 张继森, 吴长锋, 王继伟, 杜国同. 单分子-光子制冷泵的热力学行为. 物理学报, 2001, 50(8): 1467-1474. doi: 10.7498/aps.50.1467
计量
  • 文章访问数:  10832
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-13
  • 修回日期:  2019-04-11
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回