搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au(111)表面吸附单个八乙基钴卟啉分子的电子态和输运性质调控

李竟成 赵爱迪 王兵

引用本文:
Citation:

Au(111)表面吸附单个八乙基钴卟啉分子的电子态和输运性质调控

李竟成, 赵爱迪, 王兵

Controlling the electronic states and transport properties of single cobalt(Ⅱ)octaethylporphyrin molecule adsorbed on Au(111) surface

Li Jing-Cheng, Zhao Ai-Di, Wang Bing
PDF
导出引用
  • 通过低温超高真空扫描隧道显微镜及其谱学方法研究并展示了分子配体在调控表面吸附的单个八乙基钴卟啉(CoOEP)分子的电子态和输运性质中的重要作用. 通过单分子剪裁可以脱去该分子外围的甲基, 并在中心钴原子的微分电导谱中观察测到d轨道共振到近藤共振的演变. 实验结果结合第一性原理的理论计算研究表明, 在脱去甲基前后中心钴原子的化学环境和磁矩均未发生显著变化, 这一演变可以通过一个简化模型来阐释并被归结为脱去甲基后分子配体与衬底成键改变了体系隧穿参数所导致. 此外, 实验结果表明CoOEP分子配体的输运性质可受到分子间距离和范德华相互作用的显著调控. 在CoOEP低聚体中位于分子之间的乙基被抬高, 同时在其微分电导谱谱中00.8 V区域内新出现一个强的共振峰. 这一新的共振峰表现出等间距的多峰细节, 其峰间距与卟啉环和乙基之间的CC键伸缩模式能量符合. 这一新共振峰的出现被归结为由于分子局部与衬底耦合减弱形成双结隧穿体系所导致的振子态隧穿峰.
    We demonstrate that the molecular ligands play important roles in controlling the electronic states and electron transport properties of single cobalt (Ⅱ) octaethylporphyrin (CoOEP) molecule adsorbed on Au(111) surface by using low-temperature scanning tunneling microscopy and spectroscopy. Single CoOEP molecule adsorbed on Au(111) surface has eight methyl groups pointing out of the surface plane. A peak located at -50 mV in dI/dV spectrum measured on the Co atom of CoOEP is identified as a d-orbital mediated resonance. We find that the methyl groups in CoOEP can be removed in a stepwise manner, and finally lead to a fully-demethylized CoOEP. The d-orbital mediated resonance gradually evolves into a sharp Kondo resonance located right at Fermi level in the demethylization process. Both experimental and theoretical results indicate that the chemical environment and magnetic moment of the central Co atom change slightly in the fully-demethylized CoOEP: the Co atom is slightly lifted by 0.15 and the magnetic moment increases from 0.5 B to 0.6 B. The emergence of Kondo effect is qualitatively explained with a simple model by consideringthe change in the tunneling parameters of the ligands upon demethylization. We also show that the transport properties of the CoOEP can be dramatically controlled by weak intramolecular van der Waals interaction. In CoOEP closely-packed dimers and trimers where CoOEP molecules are introduced close enough to each other, the ethyl groups in the neighboring area are found to be strongly lifted by 0.4 . More surprisingly, a pronounced resonance shows up at 00.8 V in the dI/dV spectra of the lifted ethyl groups. High resolution spectra show that the new resonance consists of multiple peaks with equal spacing of 137 8 mV. The spacing energy coincides with the vibrational energy of stretching mode of CC bond between ethyl group and the brim carbon atom of the porphyrin ring. Therefore the newly-emerged resonance is attributed to the vibronic states originating from the intramolecular CC bond stretching mode excited by tunneling electrons. A model considering the local formation of a barrier between the lifted part of the molecule and the substrate is employed to explain the experimental observations. Our findings show that the electron transport properties in single molecules can be intensely tuned by controlling the chemical properties of the molecular ligands.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB921400)、国家自然科学基金(批准号: 11074236, 21473174, 51132007)和中国科学院战略性先导科技专项(B类)(批准号: KJCX2-EW-J02, XDB01020100) 资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB921400), the National Natural Science Foundation of China (Grant Nos. 11074236, 21473174, 51132007), and the Chinese Academy of Sciences (Grant Nos. KJCX2-EW-J02, XDB01020100).
    [1]

    Nazin G V, Qiu X H, Ho W 2003 Science 302 77

    [2]

    Qiu X H, Nazin G V, Ho W 2004 Phys. Rev. Lett. 92 206102

    [3]

    Wu S W, Nazin G V, Chen X, Qiu X H, Ho W 2005 Phys. Rev. Lett. 93 236802

    [4]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542.

    [5]

    Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, D S X, Hofer W A, Xie X C, Gao H J 2007 Phys. Rev. Lett. 99 106402

    [6]

    Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F, Xue Q K 2007 Phys. Rev. Lett. 99 256601

    [7]

    Chen L, Hu Z P, Zhao A D, Wang B, Luo Y, Yang J L, Hou J G 2007 Phys. Rev. Lett. 99 146803

    [8]

    Zhao A D, Hu Z P, Wang B, Xiao X D, Yang J L, Hou J G 2009 J. Chem. Phys. 128 234705

    [9]

    Tsukahara N, Noto K, Ohara M, Shiraki S, Takagi N, Takata Y, Miyawaki J, Taguchi M, Chainani A, Shin S, Kawai M 2009 Phys. Rev. Lett. 102 167203

    [10]

    Wang Y F, Kröger J, Berndt R, Vázquez H, Brandbyge M, Paulsson M 2010 Phys. Rev. Lett. 104 176802

    [11]

    Franke K J, Schulze G, Pascual J I 2011 Science 332 940

    [12]

    Mugarza A, Krull C, Robles R, Stepanow S, Ceballos G, Gambardella P 2011 Nat. Commun. 2 490

    [13]

    Strózecka A, Soriano M, Pascual J I, Palacios J J 2012 Phys. Rev. Lett. 109 147202

    [14]

    Minamitani E, Tsukahara N, Matsunaka D, Kim Y, Takagi N, Kawai M 2012 Phys. Rev. Lett. 109 086602

    [15]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Sci. Rep. 3 1210

    [16]

    Krull C, Robles R, Mugarza A, Gambardella P 2013 Nat. Mater. 12 337

    [17]

    Heinrich B W, Braun L, Pascual J I, Franke K J 2013 Nat. Phys. 9 765

    [18]

    Pan S, Fu Q, Huang T, Zhao A D, Wang B, Luo Y, Yang J L, Hou J G 2009 Proc. Natl. Acad. Sci. USA 106 15259

    [19]

    Chiappe G, Louis E 2006 Phys. Rev. Lett. 97 076806

    [20]

    Aguiar-Hualde J M, Chiappe G, Louis E, Anda E V, Simonin J 2009 Phys. Rev. B 79 155415

    [21]

    Kondo J 1964 Prog. Theor. Phys. 32 37

    [22]

    Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)

    [23]

    Schlcker S, Koster J, Nissum M, Popp J, Kiefer W 2001 J. Phys. Chem. A 105 9482

  • [1]

    Nazin G V, Qiu X H, Ho W 2003 Science 302 77

    [2]

    Qiu X H, Nazin G V, Ho W 2004 Phys. Rev. Lett. 92 206102

    [3]

    Wu S W, Nazin G V, Chen X, Qiu X H, Ho W 2005 Phys. Rev. Lett. 93 236802

    [4]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542.

    [5]

    Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, D S X, Hofer W A, Xie X C, Gao H J 2007 Phys. Rev. Lett. 99 106402

    [6]

    Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F, Xue Q K 2007 Phys. Rev. Lett. 99 256601

    [7]

    Chen L, Hu Z P, Zhao A D, Wang B, Luo Y, Yang J L, Hou J G 2007 Phys. Rev. Lett. 99 146803

    [8]

    Zhao A D, Hu Z P, Wang B, Xiao X D, Yang J L, Hou J G 2009 J. Chem. Phys. 128 234705

    [9]

    Tsukahara N, Noto K, Ohara M, Shiraki S, Takagi N, Takata Y, Miyawaki J, Taguchi M, Chainani A, Shin S, Kawai M 2009 Phys. Rev. Lett. 102 167203

    [10]

    Wang Y F, Kröger J, Berndt R, Vázquez H, Brandbyge M, Paulsson M 2010 Phys. Rev. Lett. 104 176802

    [11]

    Franke K J, Schulze G, Pascual J I 2011 Science 332 940

    [12]

    Mugarza A, Krull C, Robles R, Stepanow S, Ceballos G, Gambardella P 2011 Nat. Commun. 2 490

    [13]

    Strózecka A, Soriano M, Pascual J I, Palacios J J 2012 Phys. Rev. Lett. 109 147202

    [14]

    Minamitani E, Tsukahara N, Matsunaka D, Kim Y, Takagi N, Kawai M 2012 Phys. Rev. Lett. 109 086602

    [15]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Sci. Rep. 3 1210

    [16]

    Krull C, Robles R, Mugarza A, Gambardella P 2013 Nat. Mater. 12 337

    [17]

    Heinrich B W, Braun L, Pascual J I, Franke K J 2013 Nat. Phys. 9 765

    [18]

    Pan S, Fu Q, Huang T, Zhao A D, Wang B, Luo Y, Yang J L, Hou J G 2009 Proc. Natl. Acad. Sci. USA 106 15259

    [19]

    Chiappe G, Louis E 2006 Phys. Rev. Lett. 97 076806

    [20]

    Aguiar-Hualde J M, Chiappe G, Louis E, Anda E V, Simonin J 2009 Phys. Rev. B 79 155415

    [21]

    Kondo J 1964 Prog. Theor. Phys. 32 37

    [22]

    Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)

    [23]

    Schlcker S, Koster J, Nissum M, Popp J, Kiefer W 2001 J. Phys. Chem. A 105 9482

  • [1] 李更, 郭辉, 高鸿钧. 超高真空构筑新型二维材料及其异质结构. 物理学报, 2022, 71(10): 106801. doi: 10.7498/aps.71.20212407
    [2] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [3] 吴瑞祥, 张国峰, 乔志星, 陈瑞云. 外电场操控单分子的偶极取向极化特性研究. 物理学报, 2019, 68(12): 128201. doi: 10.7498/aps.68.20190361
    [4] 马建兵, 翟永亮, 农大官, 李菁华, 付航, 张兴华, 李明, 陆颖, 徐春华. 基于片层光照明的新型单分子横向磁镊. 物理学报, 2018, 67(14): 148702. doi: 10.7498/aps.67.20180441
    [5] 黄立, 李更, 张余洋, 鲍丽宏, 郇庆, 林晓, 王业亮, 郭海明, 申承民, 杜世萱, 高鸿钧. 低维原子/分子晶体材料的可控生长、物性调控和原理性应用. 物理学报, 2018, 67(12): 126801. doi: 10.7498/aps.67.20180846
    [6] 黎栋栋, 周武. 二维原子晶体的低电压扫描透射电子显微学研究. 物理学报, 2017, 66(21): 217303. doi: 10.7498/aps.66.217303
    [7] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [8] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 利用单分子光学探针测量幂律分布的聚合物动力学. 物理学报, 2016, 65(21): 218201. doi: 10.7498/aps.65.218201
    [9] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [10] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究. 物理学报, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [11] 郑雨军, 张兆玉, 张西忠. 单分子体系动力学的高阶累积量相似性. 物理学报, 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [12] 张国峰, 程峰钰, 贾锁堂, 孙建虎, 肖连团, 张芳. 室温单分子偶极取向与量子化再取向动力学实验研究. 物理学报, 2009, 58(4): 2364-2368. doi: 10.7498/aps.58.2364
    [13] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [14] 吴绍全, 何 忠, 阎从华, 谌雄文, 孙威立. 嵌入并联耦合双量子点介观环系统中的近藤效应. 物理学报, 2006, 55(3): 1413-1418. doi: 10.7498/aps.55.1413
    [15] 彭双艳, 黄 涛, 王晓波, 邵军虎, 肖连团, 贾锁堂. 基于光子统计测量的单分子判别. 物理学报, 2005, 54(11): 5116-5120. doi: 10.7498/aps.54.5116
    [16] 吴绍全, 孙威立, 余万伦, 王顺金. 嵌入单量子点Aharonov-Bohm环中的近藤效应. 物理学报, 2005, 54(6): 2910-2917. doi: 10.7498/aps.54.2910
    [17] 郭海明, 刘虹雯, 王业亮, 谢惠民, 戴福隆, 高鸿钧. 扫描探针显微学中的云纹方法. 物理学报, 2003, 52(10): 2514-2519. doi: 10.7498/aps.52.2514
    [18] 李群祥, 杨金龙, 袁岚峰, 侯建国, 朱清时. 钒氧酞菁(VOPc)与钒酞菁(VPc)分子的扫描隧道显微镜图像模拟. 物理学报, 2002, 51(3): 609-615. doi: 10.7498/aps.51.609
    [19] 秦伟平, 秦冠仕, 张继森, 吴长锋, 王继伟, 杜国同. 单分子-光子制冷泵的热力学行为. 物理学报, 2001, 50(8): 1467-1474. doi: 10.7498/aps.50.1467
    [20] 凌勇, 薛其坤, 陈皓明, 樱井利夫. C60分子在GaAs(001)表面的外延生长的扫描隧道显微镜研究. 物理学报, 1997, 46(8): 1559-1566. doi: 10.7498/aps.46.1559
计量
  • 文章访问数:  5817
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-12
  • 修回日期:  2015-01-24
  • 刊出日期:  2015-04-05

/

返回文章
返回