搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Xe53+离子与Xe原子碰撞过程中的辐射电子俘获和辐射退激发光谱的理论研究

梁腾 马堃 武中文 张登红 董晨钟 师应龙

引用本文:
Citation:

Xe53+离子与Xe原子碰撞过程中的辐射电子俘获和辐射退激发光谱的理论研究

梁腾, 马堃, 武中文, 张登红, 董晨钟, 师应龙

Theoretical studies on the radiative electron capture and subsequent radiative decay in the collision of Xe53+ ions with neutral Xe

Liang Teng, Ma Kun, Wu Zhong-Wen, Zhang Deng-Hong, Dong Chen-Zhong, Shi Ying-Long
PDF
导出引用
  • 基于多组态Dirac-Fock方法和密度矩阵理论, 系统地研究了在197 MeV/u的碰撞能量下, Xe53+离子与Xe原子的辐射电子俘获过程(REC)以及电子被俘获到激发态后辐射退激发产生的特征谱线. 计算了炮弹Xe53+离子俘获电子到不同壳层np1/2,3/2 (n=2-5) 的总截面与相应的REC光子能量和角分布, 以及由激发组态1s np1/2,3/2 (n=2-5) Jf=1向基态1s2 Jd=0辐射退激发的跃迁能量、跃迁概率和特征光子的角分布和线性极化度. 计算结果表明, 辐射光子具有显著的角各向异性特征. 此外, 1snp3/2 Jf=11s2 Jd= 0 退激发特征光子也显示出很强的线性极化和角各向异性特征, 而1snp1/2 Jf = 1 1s2 Jd = 0 退激发特征光子的线性极化度趋于零并且角分布也趋于各向同性.
    The radiative electron capture (REC) and subsequent radiative decay of initial hydrogen-like Xe52+ ions are studied in the collision of Xe53+ with Xe atom at a projectile energy of 197 MeV/u within the framework of the multiconfiguration Dirac-Fock method and the density matrix theory. We calculate the differential and total cross sections as well as the REC photon energies for REC to the 1snp1/2, 3/2 Jf=1 (n=2-5) levels of finally helium-like Xe53+ ions. Moreover, the transition energies and rates of the subsequent 1snp3/2 Jf=1 1s2 Jd = 0 decay as well as the angular distribution and linear polarization of the associated characteristic photons are also calculated. It is found that the REC photons are remarkably anisotropic. Through the analysis of the REC angular distribution characteristics, we find that the different configurations of the REC angular distribution are similar in quality, and they all have a peak at the 90. That is to say, the REC process can more easily occur in the direction perpendicular to the incident direction of the projectile ions. In addition, while the characteristic photons from the subsequent 1snp3/2 Jf=11s2 Jd= 0 radiative decay of Xe52+ ions exhibit an anisotropic angular distribution and strong linear polarization, their counterparts from the 1snp1/2 Jf = 1 1s2 Jd = 0 decay are almost isotropic and linearly unpolarized. The angular distribution and linear polarization of the radiation photon decay from the (1s np1/2,3/2 Jf = 0) states to the ground state(1s2 Jd = 0)both reach a maximum value at the 90, their characteristics are similar to those of the REC photons, that is to say, the deexcited process can more easily occur in the direction perpendicular to the incident direction of the projectile ions, and in this direction the decay photons have much larger polarization degree.
      通信作者: 董晨钟, dongcz@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274254,U1332206,11464042,11464040)资助的课题.
      Corresponding author: Dong Chen-Zhong, dongcz@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274254, U1332206, 11464042, 11464040).
    [1]

    Surzhykov A, Fritzsche S, Sthlker T 2001 Phys. Lett. A 289 213

    [2]

    Kozioł K 2014 J. Quant. Spectrosc. Radiat. 149 138

    [3]

    Eichler J 1990 Phys. Rep. 193 165

    [4]

    Vane C R, Datz S, Dittner P F, Giese J, Jones N L, Krause H F, Rosseel T M, Peterson R S 1994 Phys. Rev. A 49 1847

    [5]

    Wu Z W, Jiang J, Dong C Z 2011 Phys. Rev. A 84 032713

    [6]

    Wu Z W, Dong C Z, Jiang J 2012 Phys. Rev. A 86 022712

    [7]

    Wu Z W, Kabachnik N M, Surzhykov A, Dong C Z, Fritzsche S 2014 Phys. Rev. A 90 052515

    [8]

    Tashenov S, Sthlker T, Banaś D, et al. 2006 Phys. Rev. Lett. 97 223202

    [9]

    Wu Z W, Surzhykov A, Fritzsche S 2014 Phys. Rev. A 89 022513

    [10]

    Surzhykov A, Fritzsche S, Gumberidze A, Sthlker T 2002 Phys. Rev. Lett. 88 153001

    [11]

    Surzhykov A, Fritzsche S, Sthlker T, Tachenov S 2003 Phys. Rev. A 68 022710

    [12]

    Bednarz G, Warczak A, Sierpowski D, Sthlker T, Hagmann S, Bosch F, Gumberidze A, Kozhuharov C, Liesen D, Mokler P H, Ma X, Stachura Z 2003 Hyperfine Interact 146/147 29

    [13]

    Ma X, Mokler P H, Bosch F, Gumberidze A, Kozhuharov C, Liesen D, Sierpowski D, Stachura Z, Sthlker T, Warczak A 2003 Phys. Rev. A 68 042712

    [14]

    Zakowicz S, Harman Z, Grn N, Scheid W 2003 Phys. Rev. A 68 042711

    [15]

    Zakowicz S, Scheid W, and Grn N 2003 Nucl. Instrum. Methods Phys. Res. B 205 386

    [16]

    Fritzsche S, Kabachnik N M, Surzhykov A 2008 Phys. Rev. A 78 032703

    [17]

    Fritzsche S, Surzhykov A, Sthlker T 2011 Phys. Scr. T144 014002

    [18]

    Weber G, Bruning H, Surzhykov, Brandau C, Fritzsche S, Geyer S, Hagmann S, Hess S, Kozhuharov C, Mrtin R, Petridis N, Reuschl R, Spillmann U, Trotsenko S, Winters D F A, Sthlker T 2010 Phys. Rev. Lett. 105 243002

    [19]

    Brandt D 1983 Phys. Rev. A 27 1314

    [20]

    Ichihara A, Shirai T, Eichler J 1994 Phys. Rev. A 49 1875

    [21]

    Wan J J, Dong C Z, Ding X B, Ma X W, Rzadkiewicz J, Sthlker T, Fritzsche S 2009 Phys. Rev. A 79 022707

    [22]

    Koga T, Mastsuyama H 1992 Phys. Rev. A 45 5266

    [23]

    Ma X W, Sthlker T, Beyer H F, Bosch F, Brinzanescu O, Kozhuharov C, Mokler P H, Ludziejewski T, Stachura Z, Warczak A 2002 Nucl. Phys. Rev. 19 131

    [24]

    Fritzsche S, Surzhykov A, Sthlker T 2005 Phys. Rev. A 72 012704

    [25]

    Berezhko E G, Kabachnik N M 1977 J. Phys. B 10 2467

    [26]

    Chen M H, Scofield J H 1995 Phys. Rev. A 52 2057

    [27]

    Grant I P 1974 J. Phys. B 7 1458

    [28]

    JŚnsson P, He X, Fischer C F 2007 Comput. Phys. Commun. 177 597

    [29]

    Biggs F, Mendelsohn L B, Mann J B 1975 At. Data And Nucl. Data Tables 16 201

  • [1]

    Surzhykov A, Fritzsche S, Sthlker T 2001 Phys. Lett. A 289 213

    [2]

    Kozioł K 2014 J. Quant. Spectrosc. Radiat. 149 138

    [3]

    Eichler J 1990 Phys. Rep. 193 165

    [4]

    Vane C R, Datz S, Dittner P F, Giese J, Jones N L, Krause H F, Rosseel T M, Peterson R S 1994 Phys. Rev. A 49 1847

    [5]

    Wu Z W, Jiang J, Dong C Z 2011 Phys. Rev. A 84 032713

    [6]

    Wu Z W, Dong C Z, Jiang J 2012 Phys. Rev. A 86 022712

    [7]

    Wu Z W, Kabachnik N M, Surzhykov A, Dong C Z, Fritzsche S 2014 Phys. Rev. A 90 052515

    [8]

    Tashenov S, Sthlker T, Banaś D, et al. 2006 Phys. Rev. Lett. 97 223202

    [9]

    Wu Z W, Surzhykov A, Fritzsche S 2014 Phys. Rev. A 89 022513

    [10]

    Surzhykov A, Fritzsche S, Gumberidze A, Sthlker T 2002 Phys. Rev. Lett. 88 153001

    [11]

    Surzhykov A, Fritzsche S, Sthlker T, Tachenov S 2003 Phys. Rev. A 68 022710

    [12]

    Bednarz G, Warczak A, Sierpowski D, Sthlker T, Hagmann S, Bosch F, Gumberidze A, Kozhuharov C, Liesen D, Mokler P H, Ma X, Stachura Z 2003 Hyperfine Interact 146/147 29

    [13]

    Ma X, Mokler P H, Bosch F, Gumberidze A, Kozhuharov C, Liesen D, Sierpowski D, Stachura Z, Sthlker T, Warczak A 2003 Phys. Rev. A 68 042712

    [14]

    Zakowicz S, Harman Z, Grn N, Scheid W 2003 Phys. Rev. A 68 042711

    [15]

    Zakowicz S, Scheid W, and Grn N 2003 Nucl. Instrum. Methods Phys. Res. B 205 386

    [16]

    Fritzsche S, Kabachnik N M, Surzhykov A 2008 Phys. Rev. A 78 032703

    [17]

    Fritzsche S, Surzhykov A, Sthlker T 2011 Phys. Scr. T144 014002

    [18]

    Weber G, Bruning H, Surzhykov, Brandau C, Fritzsche S, Geyer S, Hagmann S, Hess S, Kozhuharov C, Mrtin R, Petridis N, Reuschl R, Spillmann U, Trotsenko S, Winters D F A, Sthlker T 2010 Phys. Rev. Lett. 105 243002

    [19]

    Brandt D 1983 Phys. Rev. A 27 1314

    [20]

    Ichihara A, Shirai T, Eichler J 1994 Phys. Rev. A 49 1875

    [21]

    Wan J J, Dong C Z, Ding X B, Ma X W, Rzadkiewicz J, Sthlker T, Fritzsche S 2009 Phys. Rev. A 79 022707

    [22]

    Koga T, Mastsuyama H 1992 Phys. Rev. A 45 5266

    [23]

    Ma X W, Sthlker T, Beyer H F, Bosch F, Brinzanescu O, Kozhuharov C, Mokler P H, Ludziejewski T, Stachura Z, Warczak A 2002 Nucl. Phys. Rev. 19 131

    [24]

    Fritzsche S, Surzhykov A, Sthlker T 2005 Phys. Rev. A 72 012704

    [25]

    Berezhko E G, Kabachnik N M 1977 J. Phys. B 10 2467

    [26]

    Chen M H, Scofield J H 1995 Phys. Rev. A 52 2057

    [27]

    Grant I P 1974 J. Phys. B 7 1458

    [28]

    JŚnsson P, He X, Fischer C F 2007 Comput. Phys. Commun. 177 597

    [29]

    Biggs F, Mendelsohn L B, Mann J B 1975 At. Data And Nucl. Data Tables 16 201

  • [1] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应. 物理学报, 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [2] 马堃, 颉录有, 董晨钟. Ar原子序列双光双电离产生光电子角分布的理论计算. 物理学报, 2020, 69(5): 053201. doi: 10.7498/aps.69.20191814
    [3] 柳钰, 徐忠锋, 王兴, 胡鹏飞, 张小安. 光子碰撞Au靶产生L系特征X射线角分布. 物理学报, 2020, 69(12): 123201. doi: 10.7498/aps.69.20191977
    [4] 吴瑞祥, 张国峰, 乔志星, 陈瑞云. 外电场操控单分子的偶极取向极化特性研究. 物理学报, 2019, 68(12): 128201. doi: 10.7498/aps.68.20190361
    [5] 陈展斌, 董晨钟. 超精细结构效应对辐射光谱圆极化特性的影响. 物理学报, 2018, 67(19): 193401. doi: 10.7498/aps.67.20180322
    [6] 马堃, 颉录有, 张登红, 蒋军, 董晨钟. 类钠离子光电子角分布的非偶极效应. 物理学报, 2017, 66(4): 043201. doi: 10.7498/aps.66.043201
    [7] 马堃, 颉录有, 张登红, 董晨钟, 屈一至. 氖原子光电子角分布的理论计算. 物理学报, 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [8] 梁腾, 马堃, 陈曦, 颉录有, 董晨钟, 邵曹杰, 于得洋, 蔡晓红. Xe54+离子与Xe原子碰撞过程中的辐射电子俘获及退激发辐射的理论研究. 物理学报, 2015, 64(15): 153401. doi: 10.7498/aps.64.153401
    [9] 王金霞, 师应龙, 张登红, 颉录有, 董晨钟. 类锂离子双电子复合过程中辐射光子角分布和极化特性的理论研究. 物理学报, 2013, 62(23): 233401. doi: 10.7498/aps.62.233401
    [10] 任学藻, 贺树, 丛红璐, 王旭文. 两格点两电子Hubbard-Holstein模型极化子的量子纠缠特性. 物理学报, 2012, 61(12): 124207. doi: 10.7498/aps.61.124207
    [11] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [12] 汤奇, 孟繁义, 张狂, 吴群, 李乐伟. 法拉第手征介质反射电磁波的极化特性研究. 物理学报, 2011, 60(1): 014206. doi: 10.7498/aps.60.014206
    [13] 李为虎, 袁蓉. BL Lac天体的γ射线和射电辐射的统计特性. 物理学报, 2009, 58(9): 6671-6676. doi: 10.7498/aps.58.6671
    [14] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 超热电子角分布和能谱的实验研究. 物理学报, 2006, 55(10): 5349-5353. doi: 10.7498/aps.55.5349
    [15] 彭晓昱, 张 杰, 金 展, 梁天骄, 仲佳勇, 武慧春, 刘运全, 王兆华, 陈正林, 盛政明, 李玉同, 魏志义. 超短脉冲激光与乙醇微滴相互作用中超热电子的双叶状角分布. 物理学报, 2004, 53(8): 2625-2632. doi: 10.7498/aps.53.2625
    [16] 张穗萌, 吴兴举. H原子(e,2e)反应中电子角分布的理论研究. 物理学报, 2001, 50(11): 2137-2143. doi: 10.7498/aps.50.2137
    [17] 李少甫, 刘强, 徐向东, 钱青, 陈学俊. 多重散射展开方法应用于正电子-氢原子的弹性散射角分布的计算. 物理学报, 1993, 42(6): 911-917. doi: 10.7498/aps.42.911
    [18] 李彤, 徐向东, 刘强, 钱青, 陈学俊. 多重散射展开方法应用于电子-氢原子弹性散射角分布的计算. 物理学报, 1993, 42(6): 905-910. doi: 10.7498/aps.42.905
    [19] 陈宝振. 氢原子阈上电离角分布. 物理学报, 1990, 39(1): 40-45. doi: 10.7498/aps.39.40
    [20] 周生墨, 程玉麟, 朱德彰. 13.4兆电子伏的氘束所致U238,Th232裂变块的角分布. 物理学报, 1966, 22(3): 374-376. doi: 10.7498/aps.22.374
计量
  • 文章访问数:  3027
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-16
  • 修回日期:  2016-05-15
  • 刊出日期:  2016-07-05

Xe53+离子与Xe原子碰撞过程中的辐射电子俘获和辐射退激发光谱的理论研究

  • 1. 西北师范大学物理与电子工程学院, 甘肃省原子分子物理与功能材料重点实验室, 兰州 730070;
  • 2. 黄山学院信息工程学院, 黄山 245041;
  • 3. 天水师范学院物理系, 天水 741000
  • 通信作者: 董晨钟, dongcz@nwnu.edu.cn
    基金项目: 国家自然科学基金(批准号:11274254,U1332206,11464042,11464040)资助的课题.

摘要: 基于多组态Dirac-Fock方法和密度矩阵理论, 系统地研究了在197 MeV/u的碰撞能量下, Xe53+离子与Xe原子的辐射电子俘获过程(REC)以及电子被俘获到激发态后辐射退激发产生的特征谱线. 计算了炮弹Xe53+离子俘获电子到不同壳层np1/2,3/2 (n=2-5) 的总截面与相应的REC光子能量和角分布, 以及由激发组态1s np1/2,3/2 (n=2-5) Jf=1向基态1s2 Jd=0辐射退激发的跃迁能量、跃迁概率和特征光子的角分布和线性极化度. 计算结果表明, 辐射光子具有显著的角各向异性特征. 此外, 1snp3/2 Jf=11s2 Jd= 0 退激发特征光子也显示出很强的线性极化和角各向异性特征, 而1snp1/2 Jf = 1 1s2 Jd = 0 退激发特征光子的线性极化度趋于零并且角分布也趋于各向同性.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回