搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超精细结构效应对辐射光谱圆极化特性的影响

陈展斌 董晨钟

引用本文:
Citation:

超精细结构效应对辐射光谱圆极化特性的影响

陈展斌, 董晨钟

Hyperfine structure effect on circular polarization of X-ray radiation

Chen Zhan-Bin, Dong Chen-Zhong
PDF
导出引用
  • 在相对论多组态Dirac-Fock方法和密度矩阵理论的基础上,利用发展的全相对论扭曲波程序,系统研究了超精细结构效应对纵向极化电子碰撞激发过程以及退激发辐射光谱圆极化特性的影响.计算得到了类氦Sc19+和205Tl79+离子1s2 1S01 s2p 3P2超精细结构层次上MF能级的碰撞强度,考察了辐射衰变过程中发出特征光子的极化特性,并分析了E1-M2量子干涉效应以及电子-电子间相互作用的相对论修正对退激发辐射光子圆极化度的影响.
    During the last decades, the electron impact excitation (EIE) process has aroused much interest in various research areas. This process is crucial to the diagnoses of astrophysical and laboratory plasmas. Moreover, the EIE studies play an important role in understanding the quantum electrodynamic, many-electron, and hyperfine interaction effects in heavy atomic systems. As is well known, when ions are excited by collisions with a unidirectional beam of electrons, the magnetic sublevels of the excited state may be populated with nonstatistical probability. In the decay of the excited state, the emitted radiation is found to be anisotropic and polarized. From the analysis of the polarization, valuable information can be obtained. These properties have become indispensable tools for the diagnosis of plasma state and the analysis of complex spectrum formation mechanism. Up to now, however, most of studies have dealt with the linear polarization of X-ray radiation. Fewer publications have reported the circular polarization. Moreover, theoretical studies of the characteristic X-ray emission have just dealt with ions having zero nuclear spin, or have simply omitted all contributions that arise from such a spin. It is known that some kinds of ions each have a nuclear spin I 0. Owing to the hyperfine coupling, new decay channel will be open, namely, hyperfine-induced transition. It is thus important to analyze how the hyperfine interaction affects the polarization properties of X-ray radiation. In this study, we present a systematically theoretical analysis of the polarization and angular distribution of X-ray radiation during the hyperfine-induced transition. The calculations are performed by using a fully relativistic distorted-wave method. Special attention is paid to the studies of angular correlations and polarization properties of the 1s2p 3P2 Fi=3/2 1s2 1S Ff=1/2 decay for highly charged He-like Sc19+ and 205Tl79+ ions with nuclear spin I=1/2 following impact excitation by a completely longitudinally-polarized electron beam. Two effects, i.e.the BI and the mutipole mixing between the leading M2 decay and hyperfine-induced E1 decay, on the polarization of the emitted radiation are discussed. Our results show that both the BI and the E1-M2 interference effects may significantly affect the polarization and angular emission pattern of the transition line. For example, the BI and the E1-M2 mixing lead the circular polarization to increase by about 50% and 40% for 205Tl79+ ions, respectively. With the development of the X-ray detectors, the measurement on the polarization during the hyperfine-induced transition becomes feasible. We hope that the present results would be useful in resolving some disagreement between the theories and experiments relating to the polarization properties of the X-ray radiation.
      通信作者: 陈展斌, chenzb008@qq.com
    • 基金项目: 国家自然科学基金(批准号:11504421)资助的课题.
      Corresponding author: Chen Zhan-Bin, chenzb008@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504421).
    [1]

    Shahbaz A, Brvenich T J, Mller C 2010 Phys. Rev. A 82 013418

    [2]

    Indelicato P, Birkett B B, Briand J P, Charles P, Dietrich D D, Marrus R, Simionovici A 1992 Phys. Rev. Lett. 68 1307

    [3]

    Bennett S C, Wieman C E 1999 Phys. Rev. Lett. 82 2484

    [4]

    Okada K, Wada M, Nakamura T, Takamine A, Lioubimov V, Schury P, Ishida Y, Sonoda T, Ogawa M, Yamazaki Y, Kanai Y, Kojima T M, Yoshida A, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2008 Phys. Rev. Lett. 101 212502

    [5]

    Brandau C, Kozhuharov C, Harman Z, Mller A, Schippers S, Kozhedub Y S, Bernhardt D, Bhm S, Jacobi J, Schmidt E W, Mokler P H, Bosch F, Kluge H J, Sthlker T, Beckert K, Beller P, Nolden F, Steck M, Gumberidze A, Reuschl R, Spillmann U, Currell F J, Tupitsyn I I, Shabaev V M, Jentschura U D, Keitel C H, Wolf A, Stachura Z 2008 Phys. Rev. Lett. 100 073201

    [6]

    Trotsenko S, Sthlker T, Banas D, Dong C Z, Fritzsche S, Gumberidze A, Hagmann S, Hess S, Indelicato P, Kozhuharov C, Nofal M, Reuschl R, Rzadkiewicz J, Spillmann U, Surzhykov A, Trassinelli M, Weber G 2007 J. Phys. Conf. Ser. 58 141

    [7]

    Yu K Z, Wu L J, Gou B C, Shi T Y 2004 Phys. Rev. A 70 012506

    [8]

    Sahoo B K 2006 Phys. Rev. A 74 020501

    [9]

    Cheng K T, Chen M H, Johnson W R 2008 Phys. Rev. A 77 052504

    [10]

    Zheng S D, Li B W, Li J G, Dong C Z 2009 Acta Phys. Sin. 58 1556 (in Chinese) [郑曙东, 李博文, 李冀光, 董晨钟 2009 物理学报 58 1556]

    [11]

    Chen Z B 2014 Ph. D. Dissertation (Lanzhou:Northwest Normal University) (in Chinese) [陈展斌 2014 博士学位论文 (兰州:西北师范大学)]

    [12]

    Song S Q, Wang G F, Ye A P, Jiang G 2007 J. Phys. B 40 475

    [13]

    Itano W M 2006 Phys. Rev. A 73 022510

    [14]

    Thierfelder C, Schwerdtfeger P, Saue T 2007 Phys. Rev. A 76 034502

    [15]

    Zolotorev M, Budker D 1997 Phys. Rev. Lett. 78 4717

    [16]

    Henderson J R, Beiersdorfer P, Bennett C L, Chantrenne S, Knapp D A, Marrs R E, Schneider M B, Wong K L, Doschek G A, Seely J F, Brown C M, LaVilla R E, Dubau J, Levine M A 1990 Phys. Rev. Lett. 65 705

    [17]

    Gumberidze A, Sthlker T, Banaś D, Beckert K, Beller P, Beyer H F, Bosch F, Hagmann S, Kozhuharov C, Liesen D, Nolden F, Ma X, Mokler P H, Steck M, Sierpowski D, Tashenov S 2005 Phys. Rev. Lett. 94 223001

    [18]

    James G K, Slevin J A, Dziczek D, McConkey J W, Bray I 1998 Phys. Rev. A 57 1787

    [19]

    Dubau J, Garbuzov Y, Urnov A 1994 Phys. Scr. 49 39

    [20]

    Inal M K, Sampson D H, Zhang H L 1997 Phys. Scr. 55 170

    [21]

    Surzhykov A, Litvinov Y, Sthlker T, Fritzsche S 2013 Phys. Rev. A 87 052507

    [22]

    Bensaid R, Inal M K, Dubau J 2006 J. Phys. B 39 4131

    [23]

    Chen Z B, Dong C Z, Jiang J 2014 Phys. Rev. A 90 022715

    [24]

    Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Phys. Rev. A 90 012703

    [25]

    Chen Z B, Dong C Z, Jiang J 2015 Phys. Scr. 90 054007

    [26]

    Chen Z B, Dong C Z, Jiang J, Xie L Y 2015 J. Phys. B 48 144030

    [27]

    Chen Z B, Zeng J L, Hu H W, Dong C Z 2015 J. Phys. B 48 144005

    [28]

    Chen Z B, Zeng J L, Dong C Z 2015 J. Phys. B 48 045202

    [29]

    Chen Z B, Zeng J L 2015 J. Phys. B 48 245201

    [30]

    Chen Z B, Zeng J L 2015 Eur. Phys. J. D 69 148

  • [1]

    Shahbaz A, Brvenich T J, Mller C 2010 Phys. Rev. A 82 013418

    [2]

    Indelicato P, Birkett B B, Briand J P, Charles P, Dietrich D D, Marrus R, Simionovici A 1992 Phys. Rev. Lett. 68 1307

    [3]

    Bennett S C, Wieman C E 1999 Phys. Rev. Lett. 82 2484

    [4]

    Okada K, Wada M, Nakamura T, Takamine A, Lioubimov V, Schury P, Ishida Y, Sonoda T, Ogawa M, Yamazaki Y, Kanai Y, Kojima T M, Yoshida A, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2008 Phys. Rev. Lett. 101 212502

    [5]

    Brandau C, Kozhuharov C, Harman Z, Mller A, Schippers S, Kozhedub Y S, Bernhardt D, Bhm S, Jacobi J, Schmidt E W, Mokler P H, Bosch F, Kluge H J, Sthlker T, Beckert K, Beller P, Nolden F, Steck M, Gumberidze A, Reuschl R, Spillmann U, Currell F J, Tupitsyn I I, Shabaev V M, Jentschura U D, Keitel C H, Wolf A, Stachura Z 2008 Phys. Rev. Lett. 100 073201

    [6]

    Trotsenko S, Sthlker T, Banas D, Dong C Z, Fritzsche S, Gumberidze A, Hagmann S, Hess S, Indelicato P, Kozhuharov C, Nofal M, Reuschl R, Rzadkiewicz J, Spillmann U, Surzhykov A, Trassinelli M, Weber G 2007 J. Phys. Conf. Ser. 58 141

    [7]

    Yu K Z, Wu L J, Gou B C, Shi T Y 2004 Phys. Rev. A 70 012506

    [8]

    Sahoo B K 2006 Phys. Rev. A 74 020501

    [9]

    Cheng K T, Chen M H, Johnson W R 2008 Phys. Rev. A 77 052504

    [10]

    Zheng S D, Li B W, Li J G, Dong C Z 2009 Acta Phys. Sin. 58 1556 (in Chinese) [郑曙东, 李博文, 李冀光, 董晨钟 2009 物理学报 58 1556]

    [11]

    Chen Z B 2014 Ph. D. Dissertation (Lanzhou:Northwest Normal University) (in Chinese) [陈展斌 2014 博士学位论文 (兰州:西北师范大学)]

    [12]

    Song S Q, Wang G F, Ye A P, Jiang G 2007 J. Phys. B 40 475

    [13]

    Itano W M 2006 Phys. Rev. A 73 022510

    [14]

    Thierfelder C, Schwerdtfeger P, Saue T 2007 Phys. Rev. A 76 034502

    [15]

    Zolotorev M, Budker D 1997 Phys. Rev. Lett. 78 4717

    [16]

    Henderson J R, Beiersdorfer P, Bennett C L, Chantrenne S, Knapp D A, Marrs R E, Schneider M B, Wong K L, Doschek G A, Seely J F, Brown C M, LaVilla R E, Dubau J, Levine M A 1990 Phys. Rev. Lett. 65 705

    [17]

    Gumberidze A, Sthlker T, Banaś D, Beckert K, Beller P, Beyer H F, Bosch F, Hagmann S, Kozhuharov C, Liesen D, Nolden F, Ma X, Mokler P H, Steck M, Sierpowski D, Tashenov S 2005 Phys. Rev. Lett. 94 223001

    [18]

    James G K, Slevin J A, Dziczek D, McConkey J W, Bray I 1998 Phys. Rev. A 57 1787

    [19]

    Dubau J, Garbuzov Y, Urnov A 1994 Phys. Scr. 49 39

    [20]

    Inal M K, Sampson D H, Zhang H L 1997 Phys. Scr. 55 170

    [21]

    Surzhykov A, Litvinov Y, Sthlker T, Fritzsche S 2013 Phys. Rev. A 87 052507

    [22]

    Bensaid R, Inal M K, Dubau J 2006 J. Phys. B 39 4131

    [23]

    Chen Z B, Dong C Z, Jiang J 2014 Phys. Rev. A 90 022715

    [24]

    Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Phys. Rev. A 90 012703

    [25]

    Chen Z B, Dong C Z, Jiang J 2015 Phys. Scr. 90 054007

    [26]

    Chen Z B, Dong C Z, Jiang J, Xie L Y 2015 J. Phys. B 48 144030

    [27]

    Chen Z B, Zeng J L, Hu H W, Dong C Z 2015 J. Phys. B 48 144005

    [28]

    Chen Z B, Zeng J L, Dong C Z 2015 J. Phys. B 48 045202

    [29]

    Chen Z B, Zeng J L 2015 J. Phys. B 48 245201

    [30]

    Chen Z B, Zeng J L 2015 Eur. Phys. J. D 69 148

  • [1] 吴柔兰, 李九生. 线极化与圆极化波均可吸收的太赫兹超表面. 物理学报, 2023, 72(5): 057802. doi: 10.7498/aps.72.20221832
    [2] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2022, 71(4): 044101. doi: 10.7498/aps.71.20211914
    [3] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211914
    [4] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [5] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器. 物理学报, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [6] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [7] 庄亚强, 王光明, 张小宽, 张晨新, 蔡通, 李海鹏. 基于梯度超表面的反射型线-圆极化转换器设计. 物理学报, 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [8] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [9] 李文惠, 张介秋, 屈绍波, 沈杨, 余积宝, 范亚, 张安学. 基于极化旋转超表面的圆极化天线设计. 物理学报, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101
    [10] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [11] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [12] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [13] 裴丽娅, 左战春, 吴令安, 傅盘铭. 受激Raman谱中的宏观极化干涉. 物理学报, 2013, 62(18): 184209. doi: 10.7498/aps.62.184209
    [14] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [15] 周丽霞, 燕友果. 共面不对称条件下He和Ar原子(e, 2e)反应过程中的极化效应和后碰撞相互作用. 物理学报, 2008, 57(12): 7619-7622. doi: 10.7498/aps.57.7619
    [16] 万建杰, 颉录有, 董晨钟, 蒋 军, 颜 君. 类镍等电子系列离子M1,M2,E2禁戒跃迁特性的理论研究. 物理学报, 2007, 56(1): 152-159. doi: 10.7498/aps.56.152
    [17] 曹 霞, 秦海燕, 成丽华. SiO2脊形条波导热极化引起的电光效应. 物理学报, 2006, 55(10): 5283-5287. doi: 10.7498/aps.55.5283
    [18] 张小安, 赵永涛, 李福利, 杨治虎, 肖国青, 詹文龙. 129Xe30+轰击Ni表面激发靶原子偶极跃迁和禁戒 (M1和E2)跃迁的特征光谱线. 物理学报, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [19] 葛自明, 周雅君, 吕志伟, 王治文. 电子碰撞原子(e,2e)反应的复极化势. 物理学报, 2002, 51(3): 519-523. doi: 10.7498/aps.51.519
    [20] 邢定钰, 龚昌德. 1:3 Peierls系统中的极化子. 物理学报, 1984, 33(8): 1198-1201. doi: 10.7498/aps.33.1198
计量
  • 文章访问数:  3957
  • PDF下载量:  402
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-10
  • 修回日期:  2018-07-19
  • 刊出日期:  2018-10-05

/

返回文章
返回