-
基于射线跟踪模型, 提出了一种超材料角反射面结构, 实现了Fabry-Perot天线增益和口径效率的提升. 首先对基于超材料角反射面的Fabry-Perot天线进行了理论推导和分析. 然后, 设计并分析了双圆极化馈源、基于超材料角反射面的Fabry-Perot天线及其性能. 最后, 对所提出的Fabry-Perot天线模型进行了制造和测试. 结果表明, 该天线的左圆极化增益和右圆极化增益分别为21.4 dBi和21.3 dBi. 相比馈源天线, 增益分别提高了16.4 dB和16.3 dB. 与传统Fabry-Perot天线相比, 所提出超材料角反射面同时充当了反射面和相位校正面, 实现了对Fabry-Perot天线边缘电磁波的有效调控. 所设计Fabry-Perot天线工作在2.8 GHz频段, 具有高增益、高口径效率和低旁瓣的优点, 满足了太阳射电望远镜F107指数观测的需求.
-
关键词:
- 超材料角反射面 /
- Fabry-Perot天线 /
- 高增益 /
- 高口径效率 /
- 太阳射电望远镜
Based on the ray-tracing model, a new method of achieving a high gain and high aperture efficiency Fabry-Perot antenna with metamaterial-based corner reflector is proposed. The proposed Fabry-Perot antenna is composed of a dual circularly polarized patch antenna feed and the metamaterial-based corner reflector. The metamaterial-based corner reflector consists of four phase correction metasurfaces and a partially reflective surface. First, theory and analysis of the Fabry-Perot antenna with metamaterial-based corner reflector are presented. Then, the performances of the dual circularly polarized antenna feed, the traditional Fabry-Perot antenna, and the Fabry-Perot antenna with metamaterial-based corner reflector are compared among each other and analyzed. Finally, the proposed Fabry-Perot antenna is fabricated and measured. The measured left-hand circular polarization (LHCP) gain and the measured right-hand circular polarization (RHCP) gain of the proposed Fabry-Perot antenna are 21.4 dBi and 21.3 dBi, respectively. Comparing with the antenna feed, the LHCP gain and RHCP gain of the proposed Fabry-Perot antenna are enhanced by 16.4 dB and 16.3 dB, respectively. Compared with the traditional Fabry-Perot antenna, the metamaterial-based corner reflector acts as both a reflection surface and a phase correction surface. It manipulates the propagation direction and phase of electromagnetic wave. The proposed Fabry-Perot antenna with high gain, high aperture efficiency and low sidelobe at 2.8 GHz paves the way for developing the solar radio telescope and conducting the observation.-
Keywords:
- metamaterial-based corner reflector /
- Fabry-Perot antenna /
- high gain /
- high aperture efficiency /
- solar radio telescope
[1] Deminov M G, Deminova G F 2020 Geomag. Aeron. 60 606Google Scholar
[2] Sun Z X, Wang J Q, Yu L F, Gou W, Wang G L 2021 Res. Astron. Astrophys. 21 105Google Scholar
[3] Zhang X G, Jiang W X, Jiang H L, Wang Q, Tian H W, Bai L, Luo Z J, Sun S, Luo Y, Qiu C W, Cui T J 2020 Nat. Electron. 3 165Google Scholar
[4] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波 2018 物理学报 67 204101Google Scholar
Wang C, Li Y F, Shen Y, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2018 Acta Phys. Sin. 67 204101Google Scholar
[5] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802Google Scholar
Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar
[6] Zhu S S, Liu H W, Wen P 2019 IEEE Trans. Antennas Propag. 67 1952Google Scholar
[7] Ge Y, Sun Z, Chen Z, Chen Y 2016 IEEE Antennas Wirel. Propag. Lett. 15 1889Google Scholar
[8] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐 2020 物理学报 69 244101Google Scholar
Hao B, Yang B F, Gao J, Cao X Y, Yang H H, Li T 2020 Acta Phys. Sin. 69 244101Google Scholar
[9] Zhu S S, Liu H W, Chen Z J 2021 J. Phys. D: Appl. Phys. 54 28LT02Google Scholar
[10] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪 2020 物理学报 69 234102Google Scholar
Guo Z X, Cao X Y, Gao J, Li S J, Yang H H, Hao B 2020 Acta Phys. Sin. 69 234102Google Scholar
[11] Liu Z, Liu S, Zhao X, Kong X, Huang Z, Bian B 2020 IEEE Trans. Antennas Propagat. 68 6497Google Scholar
[12] Almutawa A T, Hosseini A, Jackson D R, Capolino F 2019 IEEE Trans. Antennas Propagat. 67 5163Google Scholar
[13] Lu Y F, Lin Y C 2013 IEEE Trans. Antennas Propag. 61 5395Google Scholar
[14] Foroozesh A, Shafai L 2010 IEEE Trans. Antennas Propagat. 58 258Google Scholar
[15] Singh A K, Abegaonkar M P, Koul S K 2017 IEEE Antennas Wirel. Propag. Lett. 16 2388Google Scholar
[16] Al A Y, Kishk A A 2020 IEEE Trans. Antennas Propagat. 19 1920Google Scholar
[17] Zhou L, Duan X, Luo Z J, Zhou Y H, Chen X 2020 IEEE Trans. Antennas Propagat. 68 7601Google Scholar
[18] Guo Q, Wong H 2020 IEEE Trans. Antennas Propagat. 68 564Google Scholar
[19] Zhou L, Chen X, Duan X 2018 IEEE Trans. Antennas Propagat. 66 2061Google Scholar
[20] Xie P, Wang G G, Zou X J, Zong B F 2021 IEEE Trans. Antennas Propagat. 69 6965Google Scholar
[21] Amiri M A, Balanis C A, Birtcher C R, Barber G C 2020 IEEE Trans. Antennas Propagat. 68 7208Google Scholar
[22] Foroozesh A, Shafai L 2011 IEEE Trans. Antennas Propagat. 59 4Google Scholar
[23] Guo Q Y, Lin Q W, Wong H 2021 IEEE Trans. Antennas Propagat. 69 1179Google Scholar
[24] Orr R, Goussetis G, Fusco V 2014 IEEE Trans. Antennas Propagat. 62 19Google Scholar
-
表 1 天线参数
Table 1. Parameters of the proposed antenna.
参数 数值/mm 参数 数值/mm 参数 数值/mm $l_{1} $ 588 $w_{1} $ 34 h 57 $l_{2} $ 100 $w_{2} $ 35.976 $h_{1} $ 1.524 $l_{3} $ 24.7 $w_{3} $ 40 $h_{2} $ 1.524 $l_{4} $ 25.2 $w_{4} $ 38 $h_{3} $ 1.524 $l_{5} $ 43.5 $w_{5} $ 28.5 $h_{4} $ 1.524 $l_{6} $ 16.4 $w_{6} $ 26.1 $h_{5}$ 57 $l_{7} $ 33 $w_{7} $ 3.3 $l_{13} $ 584.952 $l_{8} $ 18.3 $w_{8} $ 5.6 $l_{12} $ 5.2 $l_9 $ 15.8 $l_{10} $ 16.4 $l_{11 }$ 5.6 表 2 增益高于19 dBi的相关F-P天线对比
Table 2. Comparisons of F-P antennas with the realized gain higher than 19 dBi.
-
[1] Deminov M G, Deminova G F 2020 Geomag. Aeron. 60 606Google Scholar
[2] Sun Z X, Wang J Q, Yu L F, Gou W, Wang G L 2021 Res. Astron. Astrophys. 21 105Google Scholar
[3] Zhang X G, Jiang W X, Jiang H L, Wang Q, Tian H W, Bai L, Luo Z J, Sun S, Luo Y, Qiu C W, Cui T J 2020 Nat. Electron. 3 165Google Scholar
[4] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波 2018 物理学报 67 204101Google Scholar
Wang C, Li Y F, Shen Y, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2018 Acta Phys. Sin. 67 204101Google Scholar
[5] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802Google Scholar
Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar
[6] Zhu S S, Liu H W, Wen P 2019 IEEE Trans. Antennas Propag. 67 1952Google Scholar
[7] Ge Y, Sun Z, Chen Z, Chen Y 2016 IEEE Antennas Wirel. Propag. Lett. 15 1889Google Scholar
[8] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐 2020 物理学报 69 244101Google Scholar
Hao B, Yang B F, Gao J, Cao X Y, Yang H H, Li T 2020 Acta Phys. Sin. 69 244101Google Scholar
[9] Zhu S S, Liu H W, Chen Z J 2021 J. Phys. D: Appl. Phys. 54 28LT02Google Scholar
[10] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪 2020 物理学报 69 234102Google Scholar
Guo Z X, Cao X Y, Gao J, Li S J, Yang H H, Hao B 2020 Acta Phys. Sin. 69 234102Google Scholar
[11] Liu Z, Liu S, Zhao X, Kong X, Huang Z, Bian B 2020 IEEE Trans. Antennas Propagat. 68 6497Google Scholar
[12] Almutawa A T, Hosseini A, Jackson D R, Capolino F 2019 IEEE Trans. Antennas Propagat. 67 5163Google Scholar
[13] Lu Y F, Lin Y C 2013 IEEE Trans. Antennas Propag. 61 5395Google Scholar
[14] Foroozesh A, Shafai L 2010 IEEE Trans. Antennas Propagat. 58 258Google Scholar
[15] Singh A K, Abegaonkar M P, Koul S K 2017 IEEE Antennas Wirel. Propag. Lett. 16 2388Google Scholar
[16] Al A Y, Kishk A A 2020 IEEE Trans. Antennas Propagat. 19 1920Google Scholar
[17] Zhou L, Duan X, Luo Z J, Zhou Y H, Chen X 2020 IEEE Trans. Antennas Propagat. 68 7601Google Scholar
[18] Guo Q, Wong H 2020 IEEE Trans. Antennas Propagat. 68 564Google Scholar
[19] Zhou L, Chen X, Duan X 2018 IEEE Trans. Antennas Propagat. 66 2061Google Scholar
[20] Xie P, Wang G G, Zou X J, Zong B F 2021 IEEE Trans. Antennas Propagat. 69 6965Google Scholar
[21] Amiri M A, Balanis C A, Birtcher C R, Barber G C 2020 IEEE Trans. Antennas Propagat. 68 7208Google Scholar
[22] Foroozesh A, Shafai L 2011 IEEE Trans. Antennas Propagat. 59 4Google Scholar
[23] Guo Q Y, Lin Q W, Wong H 2021 IEEE Trans. Antennas Propagat. 69 1179Google Scholar
[24] Orr R, Goussetis G, Fusco V 2014 IEEE Trans. Antennas Propagat. 62 19Google Scholar
计量
- 文章访问数: 6870
- PDF下载量: 153
- 被引次数: 0