-
设计了一种工作于X波段的基于共享孔径Fabry-Perot(F-P)谐振腔结构的宽带高增益磁电偶极子微带天线, 并设计了三种不同尺寸的双层FSS单元, 通过共享孔径布阵组成了超材料覆层. 利用三种FSS单元的相位补偿特性, 有效拓展了覆层天线的增益带宽. 实测和仿真结果均表明, 加载超材料覆层后, 磁电偶极子天线在7.8- 12.3 GHz内S11-10 dB, 相对带宽达到44.7%, 覆盖整个X波段. 天线增益在7.9-12.1 GHz 内均有明显的提高, 最大提高了7 dB. 相较于传统的F-P谐振腔结构覆层天线, 设计的基于共享孔径的F-P谐振型超材料覆层天线能够明显拓展天线增益带宽, 在新型宽带高增益天线设计方面具有广阔的应用前景.
-
关键词:
- Fabry-Perot谐振腔 /
- 共享孔径 /
- 宽带 /
- 磁电偶极子天线
The demands for highly directive antennas are becoming more stringent, especially in microwave regions. Traditional ways to enhance the antenna gain such as reflectors, dielectric lenses, waveguide horns and microstrip antenna arrays suffer design complexity, high cost and power loss in the feeding network, so it is urgent to find a simple way to solve the problem. Fabry-Perot (F-P) antenna has a high directivity and low sidewall, owing to the resonance of the cavity in a cophasal and tapered field distribution along the lateral direction. However, the disadvantage of F-P antenna is obvious for the inherently narrow gain bandwidth which inhibits their many applications. In this paper, a broadband and high-gain shared-aperture F-P resonator magneto-electric (ME) microstrip antenna working at X band is designed and fabricated. In order to design a wideband metamaterial superstrate unit, the structure with two different frequency selective surface (FSS) layers is presented: the metal pattern at the top of the unit is a square patch and has a high reflection coefficient in the high frequency band, and at the bottom the metal pattern is a cross patch, it has a high reflection coefficient in the low frequency band, therefore, the whole unit should resonate in a broadband frequency range. Theoretical analysis and simulation result indicate that the unit has a linearly increasing phase response and a high reflection coefficient across a broadband range and it has the potential to construct a wideband F-P resonator antenna. In the proposed antenna, a novel wideband ME microstrip antenna is used as the feeding source. For the antenna covers the whole X band, the bandwidth of the F-P resonator superstrate should be further expanded. Simulated calculation results indicate that different sizes of two-layer FSSs have different reflection phases but the same coefficient, therefore a shared-aperture structure with three different sizes of FSSs is obtained. The arrangement utilizes the phase compensation property along different FSSs, and broadens the gain enhancement bandwidth effectively. When the superstrate is set to be approximately 15.5 mm above the ground plane of the ME antenna, the antenna possesses an impedance bandwidth of 44.7% for the reflection coefficient (S11) below -10 dB from 7.8 GHz to 12.3 GHz, covering the whole X band. From 7.9 GHz to 12.1 GHz, the antenna has an obvious gain enhancement, with a peak of 7 dB. Numerical and experimental results indicate that compared with the traditional F-P resonator structure, the shared-aperture metamaterial superstrate can effectively broaden the antenna gain enhancement bandwidth, and it has great application values for designing new broadband metamaterial superstrate high-gain antennas.-
Keywords:
- Fabry-Perot resonator /
- shared-aperture /
- broadband /
- magneto-electric antenna
[1] Qu S W 2012 IEEE Antennas Wireless Propaga. Lett. 11 850
[2] Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin. 63 224102 (in Chinese) [郑月军, 高军, 曹祥玉, 郑秋荣, 李思佳, 李文强, 杨群 2014 物理学报 63 224102]
[3] Sun Y Z, Ran L X, Peng L, Wang W G, Li T, Zhao X, Chen Q L 2009 Chin. Phys. B 18 017405
[4] Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494
[5] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802
[6] Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801
[7] Li S J, Gao J, Cao X Y, Li W Q, Zhang Z, Zhang D 2014 J. Appl. Phys. 116 043710
[8] Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402
[9] Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 物理学报 62 064103]
[10] Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523
[11] Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425
[12] Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116
[13] Tang G M, Miao J G, Dong J M 2012 Chin. Phys. B 21 128401
[14] Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101
[15] Trentini G V 1956 IRE Trans. 4 666
[16] Wang N Z, Li J Z, Wei G, Talbi L, Zeng Q S, Xu J D 2015 IEEE Antennas Wireless Propaga. Lett. 14 229
[17] Wang T T, Ge Y X, Chang J H, Wang M 2016 IEEE Pho. Technol. Lett. 28 3
[18] Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Antennas Propag. 60 743
[19] Al-Tarifi M A, Anagnostou D E, Amert A K, Whites K W 2013 IEEE Trans. Antennas Propag. 61 1898
[20] Vettikalladi H, Lafond O, Himdi M 2009 IEEE Antennas Wireless Propag. Lett. 8 1422
[21] Feresidis A P, Goussetis S, Wang S, Vardaxoglou J C 2005 IEEE Trans. Antennas Propag. 53 209
[22] Muhammad S A, Sauleau R, Coq L, Legay H 2011 IEEE Antennas Wireless Propag. Lett. 10 907
[23] Gardelli R, Albani M, Capolino F 2006 IEEE Trans. Antennas Propag. 54 1979
[24] Zeb B A, Ge Y H, Esselle K P, Sun Z, Tobar M E 2012 IEEE Trans. Antennas Propag. 60 4522
[25] Wang N Z, Liu Q, Wu C Y, Talbi L, Zeng Q S, Xu J D 2014 IEEE Trans. Antennas Propag. 62 2463
[26] Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391
[27] Weily A R, Esselle K P, Bird T S, Sanders B C 2007 IET Microw. Antennas Propag. 1 198
-
[1] Qu S W 2012 IEEE Antennas Wireless Propaga. Lett. 11 850
[2] Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin. 63 224102 (in Chinese) [郑月军, 高军, 曹祥玉, 郑秋荣, 李思佳, 李文强, 杨群 2014 物理学报 63 224102]
[3] Sun Y Z, Ran L X, Peng L, Wang W G, Li T, Zhao X, Chen Q L 2009 Chin. Phys. B 18 017405
[4] Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494
[5] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802
[6] Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801
[7] Li S J, Gao J, Cao X Y, Li W Q, Zhang Z, Zhang D 2014 J. Appl. Phys. 116 043710
[8] Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402
[9] Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 物理学报 62 064103]
[10] Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523
[11] Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425
[12] Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116
[13] Tang G M, Miao J G, Dong J M 2012 Chin. Phys. B 21 128401
[14] Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101
[15] Trentini G V 1956 IRE Trans. 4 666
[16] Wang N Z, Li J Z, Wei G, Talbi L, Zeng Q S, Xu J D 2015 IEEE Antennas Wireless Propaga. Lett. 14 229
[17] Wang T T, Ge Y X, Chang J H, Wang M 2016 IEEE Pho. Technol. Lett. 28 3
[18] Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Antennas Propag. 60 743
[19] Al-Tarifi M A, Anagnostou D E, Amert A K, Whites K W 2013 IEEE Trans. Antennas Propag. 61 1898
[20] Vettikalladi H, Lafond O, Himdi M 2009 IEEE Antennas Wireless Propag. Lett. 8 1422
[21] Feresidis A P, Goussetis S, Wang S, Vardaxoglou J C 2005 IEEE Trans. Antennas Propag. 53 209
[22] Muhammad S A, Sauleau R, Coq L, Legay H 2011 IEEE Antennas Wireless Propag. Lett. 10 907
[23] Gardelli R, Albani M, Capolino F 2006 IEEE Trans. Antennas Propag. 54 1979
[24] Zeb B A, Ge Y H, Esselle K P, Sun Z, Tobar M E 2012 IEEE Trans. Antennas Propag. 60 4522
[25] Wang N Z, Liu Q, Wu C Y, Talbi L, Zeng Q S, Xu J D 2014 IEEE Trans. Antennas Propag. 62 2463
[26] Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391
[27] Weily A R, Esselle K P, Bird T S, Sanders B C 2007 IET Microw. Antennas Propag. 1 198
计量
- 文章访问数: 6268
- PDF下载量: 344
- 被引次数: 0