搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宽波束磁电偶极子天线的宽角扫描线性相控阵列

杨浩楠 曹祥玉 高军 杨欢欢 李桐

引用本文:
Citation:

基于宽波束磁电偶极子天线的宽角扫描线性相控阵列

杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐

Wide-angle scanning linear phased arrays based on wide-beam magneto electric dipole antenna

Yan Hao-Nan, Cao Xiang-Yu, Gao Jun, Yang Huan-Huan, Li Tong
PDF
HTML
导出引用
  • 设计并加工了两款基于宽波束磁电偶极子天线单元的宽角扫描线性阵列. 首先,通过加载磁偶极子的方法拓展了天线单元的3-dB波束宽度. 然后, 基于该宽波束天线单元设计了两款具有良好宽角扫描特性的一维阵列天线. 实测结果表明,天线单元的E面方向图3-dB波束宽度在9GHz—12 GHz均大于107°, H面方向图3-dB波束宽度在7GHz—12 GHz均大于178°. E面阵列中心单元的有源驻波比在9GHz—13 GHz小于2, 相对阻抗带宽为36.36%. H面阵列中心单元的有源驻波比在9.6GHz—12.6 GHz小于2.5, 相对阻抗带宽为27.03%. E面阵列在9GHz—12 GHz可实现 ± 70°的有效宽角扫描. H面阵列在9GHz—GHz可实现 ± 90°的有效宽角扫描. 与传统的扫描阵列相比, 设计的阵列可实现有效宽带宽角扫描, 在X波段相控阵雷达方面具有广阔的应用前景.
    Microstrip phased array has aroused interest of many researchers because of its beam agility. However, a big problem for typical microstrip array is that its main beam can only scan from about –50° to 50°, with a gain loss of 4-5 dB. Meanwhile, the relatively narrow operating bandwidth of microstrip antenna is also a problem in application. These flaws have dramatically limited its applications and spawned many studies on phased array with wide-angle scanning capability. Several methods have been proposed to broaden the scanning coverage of phased array, such as utilizing pattern-reconfigurable antenna as an element of array, taking wide-beam antenna as the element of array, and adopt metasurface as the top cladding of array. However, most of existing researches mainly focus on achieving wide-angle scanning performance within a relatively narrow bandwidth. A phased array that possesses wide-angle scanning capability at both main planes within a relatively wide bandwidth is highly desirable. In this paper, a wide-beam magnetoelectric (ME) dipole antenna is proposed. It consists of an ME dipole antenna in the form of microstrip patch and a pair of magnetic dipoles. Metallic through holes integrated with patches and ground are utilized to form magnetic currents. Extra magnetic dipoles are added to broaden the 3-dB beam-width. The simulated results reveal that the 3-dB beam-width of the proposed antenna is greater than 107° in the E-plane (9 GHz–12 GHz) and 178° in the H-plane (7 GHz–12 GHz) respectively. The impedance bandwidth of the proposed antenna is 53.26% from 7.3 GHz to 12.6 GHz (VWSR < 2). Based on the proposed antenna element, two linear phased arrays are fabricated and measured. To test the wide-angle scanning capability of the arrays, each antenna element is simply fed with alternating currents with identical amplitude and linearly increasing phases. The measured results reveal that the wide-angle scanning capability of H-plane array and E-plane array can be obtained from 9 GHz to 12 GHz. The scanning beam of the H-plane array can cover the range from -90° to 90°. The scanning beam of the E-plane array can cover the range from –70° to 70°. The impedance bandwidth of the central antenna is 27.03% for the H-plane array from 9.6 GHz to 12.6 GHz (active VWSR < 2.5) and 36.36% for the E-plane array from 9 GHz to 13 GHz (active VWSR < 2) respectively. Hence, the proposed method can be used as a reference for designing a wide-beam antenna and wide-angle scanning phased array and the designed phased arrays can be applied to X-band radar systems.
      通信作者: 杨浩楠, 18220526812@163.com
    • 基金项目: 国家自然科学基金(批准号: 61671464, 61801508, 61701523), 陕西省自然科学基础研究计划(批准号: 2018JM6040, 2019JQ-103)和博士后创新人才支持计划(批准号: BX20180375)资助的课题
      Corresponding author: Yan Hao-Nan, 18220526812@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61671464, 61801508, 61701523), the Natural Science Foundational Research Fund of Shaanxi Province, China (Grant Nos. 2018JM6040, 2019JQ-103), and the Postdoctoral Innovation Talent Support Program of China (Grant No. BX20180375)
    [1]

    张祖稷, 金林, 束咸荣 2005 雷达天线技术 (北京: 电子工业出版社) 第221页

    Zhang Z J, Jin L, Shu X R 2007 Radar Antenna Technology (Beijing: Publishing House of Electronics Industry) p221 (in Chinese)

    [2]

    Bai Y Y, Xiao S Q, Wang B Z, Ding Z F 2010 J. Infrared Millim. Terahertz Waves 31 1Google Scholar

    [3]

    Bai Y Y, Xiao S Q, Tang M C, Ding Z F 2011 IEEE Trans. Antennas Propag. 59 4071Google Scholar

    [4]

    Ding X, Wang B Z, He G Q 2013 IEEE Trans. Antennas Propag. 61 5319Google Scholar

    [5]

    Xiao S Q, Zheng C R, Li M, Xiong J 2015 IEEE Trans. Antennas Propag. 63 2364Google Scholar

    [6]

    Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 396Google Scholar

    [7]

    Ding X, Cheng Y F, Shao W, Wang B Z 2017 IEEE Trans. Antennas Propag. 65 4548Google Scholar

    [8]

    Ge L, Luk K M 2015 IEEE Antennas Wireless Propag. Lett. 14 28Google Scholar

    [9]

    Ge L, Luk K M 2016 IEEE Trans. Antennas Propag. 64 423Google Scholar

    [10]

    Shi Y, Cai Y, Yang J, Li L 2019 IEEE Antennas Wireless Propag. Lett. 18 28Google Scholar

    [11]

    Lin G 2007 Radar Sci. Technol. 5 157

    [12]

    Wang R, Wang B Z, Hu C, Ding X 2015 IEEE Trans. Antennas Propag. 63 3908Google Scholar

    [13]

    Wang R, Wang B Z, Ding X, Yang X S 2017 Sci. Rep. 7 2729Google Scholar

    [14]

    Liu C M, Xiao S Q, Tu H L, Ding Z F 2017 IEEE Trans. Antennas Propag. 65 1151Google Scholar

    [15]

    Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 876Google Scholar

    [16]

    Yang G W, Li J Y, Wei D J, Xu R 2018 IEEE Trans. Antennas Propag. 66 450Google Scholar

    [17]

    Yang G W, Li J Y, Yang J J, Zhou S G 2018 IEEE Trans. Antennas Propag. 66 6724Google Scholar

    [18]

    Yang G W, Chen Q Q, Li J Y, Zhou S G, Xing Z J 2019 IEEE Acc. 7 71897Google Scholar

    [19]

    Chattopadhyay S 2009 IEEE Trans. Antennas Propag. 57 3325Google Scholar

    [20]

    Yang H H, Li T, Xu L M, Cao X Y, Gao J, Tian J H, Yang H N, Sun D 2019 IEEE Acc. 7 152715Google Scholar

    [21]

    Lü Y H, Ding X, Wang B Z, Anagnostou D E 2020 IEEE Trans. Antennas Propag. 68 1402Google Scholar

    [22]

    Luk K M, Wong H 2006 Int. J. Microw. Opt. Technol. 1 35

    [23]

    Ng K B, Wong H, So K K, Chan C H, Luk K M 2012 IEEE Trans. Antennas Propag. 60 3129Google Scholar

    [24]

    Li Y J, Luk K M 2014 IEEE Trans. Antennas Propag. 62 1830Google Scholar

    [25]

    Lai J, Feng B, Zeng Q 2019 IEEE 6th International Symposium on Electromagnetic Compatibility Nanjing, China November 1–4, 2019 p1

    [26]

    Feng B T, Zhu C, Cheng J C, Sim C Y D 2019 IEEE Acc. 7 43346Google Scholar

    [27]

    郑贵 2016 硕士学位论文 (成都: 电子科技大学)

    Zheng G 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [28]

    王茂泽 2014 硕士学位论文 (西安: 西安电子科技大学)

    Wang M Z 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [29]

    徐志 2008 博士学位论文 (西安: 西安电子科技大学)

    Xu Z 2008 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [30]

    Smolders A B 1996 Proceedings of International Symposium on Phased Array Systems and Technology Boston, MA, USA, October 15–18, 1996 p87

    [31]

    Kedar A, Beenamole K S 2011 Prog. Electro. Res. B 27 235Google Scholar

  • 图 1  宽波束天线单元结构图 (a) 三维图; (b) 俯视图

    Fig. 1.  Structure of the wide-beam antenna: (a) 3-D view; (b) top view.

    图 2  设计流程

    Fig. 2.  The design process.

    图 3  10 GHz处3-dB波束宽度拓展效果

    Fig. 3.  The broadening effect of 3-dB beam-width at 10 GHz.

    图 4  10 GH处电流分布图 (a) 0°; (b) 90°; (a) 180°; (b) 270°

    Fig. 4.  The distribution of electric current at 10 GHz: (a) 0°; (b) 90°; (c) 180°; (d) 270°.

    图 5  天线单元驻波比

    Fig. 5.  VSWR of the antenna.

    图 6  天线单元方向图

    Fig. 6.  Radiation patterns of the antenna.

    图 7  一维相控阵列 (a) E面阵列; (b) H面阵列

    Fig. 7.  The phased arrays: (a) E-plane array; (b) H-plane array.

    图 8  阵列实物图 (a) E面阵列; (b) H面阵列

    Fig. 8.  The prototypes of the arrays: (a) E-plane array; (b) H-plane array.

    图 9  阵列中心单元实测有源驻波比 (a) E面阵列; (b) H面阵列

    Fig. 9.  The active VSWRs of the unit at the center of two arrays: (a) E-plane array; (b) H-plane array.

    图 10  E面阵列实测扫描方向图 (a) 9 GHz; (b) 10 GHz; (a) 11 GHz; (b) 12 GHz

    Fig. 10.  The scanning patterns of the E-plane array: (a) 9 GHz; (b) 10 GHz; (c) 11 GHz; (d) 12 GHz.

    图 11  H面阵列实测扫描方向图 (a) 9 GHz; (b) 10 GHz; (a) 11 GHz; (b) 12 GHz

    Fig. 11.  The scanning patterns of the H-plane array: (a) 9 GHz; (b) 10 GHz; (c) 11 GHz; (d) 12 GHz.

    表 1  宽波束天线单元参数

    Table 1.  Parameters of the wide-beam antenna.

    天线参数LWHL1L2L3L4L5L6 L7L8W1W2W3W4W5W6W7
    参数值/mm1593.50.63.22.221.50.5 3.21.551.51.52.8621
    下载: 导出CSV

    表 2  天线单元3-dB波束宽度

    Table 2.  3-dB beam-width of the antenna.

    频率/GHzE面3-dB波束宽度/(°)H面3-dB波束宽度/(°)
    797180.4
    8101.1178.2
    9107178.4
    10115.8185.2
    11135.5220.9
    12180.6360
    下载: 导出CSV

    表 3  2号天线与3号天线增益对比

    Table 3.  Comparison between Ant.2 and Ant.3.

    频率/GHz参考天线增益/dBi本文天线增益-/dBi
    95.914.19
    105.983.91
    115.843.59
    125.432.87
    下载: 导出CSV

    表 4  已报道宽波束磁电偶极子天线与本文天线特性对比

    Table 4.  Comparison between the reported and proposed magneto-electric dipole antenna.

    文献相对阻抗带宽/%工作频带/GHz增益/dBi剖面/λE面波束宽度/(°)H面波束宽度/(°)
    [16]34.63.1—4.40.21174112
    [17]81.13.3—7.83.65 ± 1.650.27215 (5.5 GHz)
    106 (7.5 GHz)
    186 (5.5 GHz)
    83 (7.5 GHz)
    [24]412.42—3.76.30.4575120
    [25]632.76—5.350.15129.1 (3.4 GHz)
    151.6 (4.9 GHz)
    100.4 (3.4 GHz)
    94.2 (4.9 GHz)
    [26]22.6
    19.6
    3.25—4.08
    4.29—5.22
    6.9 ± 0.3
    5.4 ± 0.7
    0.27
    0.23
    91 (3.5 GHz)
    168 (4.9 GHz)
    83 (3.5 GHz)
    74 (4.9 GHz)
    83 (3.5 GHz)
    162 (4.9 GHz)
    90 (3.5 GHz)
    133 (4.9 GHz)
    本文53.267.3—12.63.53 ± 0.660.116>97>178.2
    下载: 导出CSV

    表 5  已报道X波段相控阵与本文相控阵天线特性对比

    Table 5.  Comparison between the reported and proposed X-band phased arrays.

    文献相对阻抗带宽/%工作频带/GHz剖面/λE面扫描范围/(°)H面扫描范围/(°)
    [27]408—120.31± 60 (8—10 GHz)
    ± 50 (12 GHz)
    ± 60 (8—10 GHz)
    ± 50 (12 GHz)
    [28]408—121.22± 45± 45
    [29]18.1810.5—12.60.84± 60± 60
    [30]408—120.8± 45± 60
    [31]30± 60± 60
    本文28.59—120.116± 70± 90
    下载: 导出CSV
  • [1]

    张祖稷, 金林, 束咸荣 2005 雷达天线技术 (北京: 电子工业出版社) 第221页

    Zhang Z J, Jin L, Shu X R 2007 Radar Antenna Technology (Beijing: Publishing House of Electronics Industry) p221 (in Chinese)

    [2]

    Bai Y Y, Xiao S Q, Wang B Z, Ding Z F 2010 J. Infrared Millim. Terahertz Waves 31 1Google Scholar

    [3]

    Bai Y Y, Xiao S Q, Tang M C, Ding Z F 2011 IEEE Trans. Antennas Propag. 59 4071Google Scholar

    [4]

    Ding X, Wang B Z, He G Q 2013 IEEE Trans. Antennas Propag. 61 5319Google Scholar

    [5]

    Xiao S Q, Zheng C R, Li M, Xiong J 2015 IEEE Trans. Antennas Propag. 63 2364Google Scholar

    [6]

    Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 396Google Scholar

    [7]

    Ding X, Cheng Y F, Shao W, Wang B Z 2017 IEEE Trans. Antennas Propag. 65 4548Google Scholar

    [8]

    Ge L, Luk K M 2015 IEEE Antennas Wireless Propag. Lett. 14 28Google Scholar

    [9]

    Ge L, Luk K M 2016 IEEE Trans. Antennas Propag. 64 423Google Scholar

    [10]

    Shi Y, Cai Y, Yang J, Li L 2019 IEEE Antennas Wireless Propag. Lett. 18 28Google Scholar

    [11]

    Lin G 2007 Radar Sci. Technol. 5 157

    [12]

    Wang R, Wang B Z, Hu C, Ding X 2015 IEEE Trans. Antennas Propag. 63 3908Google Scholar

    [13]

    Wang R, Wang B Z, Ding X, Yang X S 2017 Sci. Rep. 7 2729Google Scholar

    [14]

    Liu C M, Xiao S Q, Tu H L, Ding Z F 2017 IEEE Trans. Antennas Propag. 65 1151Google Scholar

    [15]

    Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 876Google Scholar

    [16]

    Yang G W, Li J Y, Wei D J, Xu R 2018 IEEE Trans. Antennas Propag. 66 450Google Scholar

    [17]

    Yang G W, Li J Y, Yang J J, Zhou S G 2018 IEEE Trans. Antennas Propag. 66 6724Google Scholar

    [18]

    Yang G W, Chen Q Q, Li J Y, Zhou S G, Xing Z J 2019 IEEE Acc. 7 71897Google Scholar

    [19]

    Chattopadhyay S 2009 IEEE Trans. Antennas Propag. 57 3325Google Scholar

    [20]

    Yang H H, Li T, Xu L M, Cao X Y, Gao J, Tian J H, Yang H N, Sun D 2019 IEEE Acc. 7 152715Google Scholar

    [21]

    Lü Y H, Ding X, Wang B Z, Anagnostou D E 2020 IEEE Trans. Antennas Propag. 68 1402Google Scholar

    [22]

    Luk K M, Wong H 2006 Int. J. Microw. Opt. Technol. 1 35

    [23]

    Ng K B, Wong H, So K K, Chan C H, Luk K M 2012 IEEE Trans. Antennas Propag. 60 3129Google Scholar

    [24]

    Li Y J, Luk K M 2014 IEEE Trans. Antennas Propag. 62 1830Google Scholar

    [25]

    Lai J, Feng B, Zeng Q 2019 IEEE 6th International Symposium on Electromagnetic Compatibility Nanjing, China November 1–4, 2019 p1

    [26]

    Feng B T, Zhu C, Cheng J C, Sim C Y D 2019 IEEE Acc. 7 43346Google Scholar

    [27]

    郑贵 2016 硕士学位论文 (成都: 电子科技大学)

    Zheng G 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [28]

    王茂泽 2014 硕士学位论文 (西安: 西安电子科技大学)

    Wang M Z 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [29]

    徐志 2008 博士学位论文 (西安: 西安电子科技大学)

    Xu Z 2008 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [30]

    Smolders A B 1996 Proceedings of International Symposium on Phased Array Systems and Technology Boston, MA, USA, October 15–18, 1996 p87

    [31]

    Kedar A, Beenamole K S 2011 Prog. Electro. Res. B 27 235Google Scholar

  • [1] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计. 物理学报, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [2] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [3] 童三强, 王秉中, 王任. 用于提升有限口径辐射功率的紧耦合相控阵天线的设计. 物理学报, 2021, 70(20): 204101. doi: 10.7498/aps.70.20210309
    [4] 胡昌海, 王任, 陈传升, 王秉中. 平面相控阵超大角度扫描的阵因子分析. 物理学报, 2021, 70(9): 098401. doi: 10.7498/aps.70.20201850
    [5] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [6] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计. 物理学报, 2020, 69(22): 224201. doi: 10.7498/aps.69.20201488
    [7] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计*. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201448
    [8] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [9] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波. 一种宽角域散射增强超表面的研究. 物理学报, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [10] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制. 物理学报, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [11] 韩亚娟, 张介秋, 李勇峰, 王甲富, 屈绍波, 张安学. 基于微波表面等离激元的360电扫描多波束天线. 物理学报, 2016, 65(14): 147301. doi: 10.7498/aps.65.147301
    [12] 郑莉, 郭建中. 圆环形聚焦声场的构建与调控. 物理学报, 2016, 65(4): 044305. doi: 10.7498/aps.65.044305
    [13] 张晨, 曹祥玉, 高军, 李思佳, 郑月军. 一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线. 物理学报, 2016, 65(13): 134205. doi: 10.7498/aps.65.134205
    [14] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [15] 丁亚军, 钱盛友, 胡继文, 邹孝. 超声相控阵在多层媒质中的声场模式优化. 物理学报, 2012, 61(14): 144301. doi: 10.7498/aps.61.144301
    [16] 汪剑鹏, 晋云霞, 麻健勇, 邵建达, 范正修. 基于泄漏模共振的多层介质膜光栅宽角谱特性实现. 物理学报, 2010, 59(5): 3199-3204. doi: 10.7498/aps.59.3199
    [17] 邹其徽, 吕百达. 等束宽超短脉冲光束的远场特性. 物理学报, 2005, 54(12): 5642-5647. doi: 10.7498/aps.54.5642
    [18] 陈如鸿, 马本堃. 键电导宽分布的等级网络. 物理学报, 1996, 45(7): 1197-1204. doi: 10.7498/aps.45.1197
    [19] 裘辛方. 混响强度及其衰减规律与脉宽的关系. 物理学报, 1976, 25(1): 47-52. doi: 10.7498/aps.25.47
    [20] 陆埮. M?ssbauer谱线的热致宽. 物理学报, 1964, 20(8): 777-784. doi: 10.7498/aps.20.777
计量
  • 文章访问数:  8420
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-12
  • 修回日期:  2020-08-11
  • 上网日期:  2021-01-12
  • 刊出日期:  2021-01-05

/

返回文章
返回