搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆环形聚焦声场的构建与调控

郑莉 郭建中

引用本文:
Citation:

圆环形聚焦声场的构建与调控

郑莉, 郭建中

A controllable circular ring acoustic focused field

Zheng Li, Guo Jian-Zhong
PDF
导出引用
  • 提出了一种由径向振动模式的圆环形压电换能器晶片组成的圆柱形阵列换能器结构, 依据阵元激励信号的相位调控机理, 推导了圆环形聚焦声场的调控公式, 在三维空间中构建了圆环形聚焦声场, 实现了对其聚焦区域大小、聚焦圆环半径以及轴向位置移动的调控. 理论分析和仿真研究表明, 所提出的圆柱形阵列换能器实现了对圆环形聚焦声场的调控. 为检测超声、功率超声、医学超声等应用领域提供了一种可实现的新型圆环形可调控聚焦声场.
    Based on Huygens principle about the aspect of phased array, this paper presents a structure of cylindrical acoustic transducer consisting of circular ring piezoelectric transducer elements in radial vibration mode, which can be used to achieve the ultrasonic nondestructive test for the cylindrical scanning acoustic field in three-dimensional space. By analyzing the acoustic field of a single ring line source and a single element, the sound field distribution of the phased array is obtained for constructing circular ring acoustic focused field. By means of the phased array incentive mode, the phase difference of driving signals is generated and forms a regular time delay; with the accomplishment of sound field scanning in cylindrical three-dimensional space, the circular ring acoustic focused field can be controlled in real time.Theoretical analysis and finite element simulation results demonstrate that the size of the circular ring acoustic focused field can be controlled by the numbers of the excited array elements, which are 4, 8, 16 and 32 respectively in our work. We find that with more array element numbers, the circular ring acoustic field has better focused features. The radius size of the circular ring acoustic focused field can be controlled by the different locations of the focus positions which are 30 and 50 mm respectively in our work. And we find that as the distance between the focus positions and the center of piezoelectric wafer becomes longer, the radius of the circular ring acoustic focused field becomes bigger, and the position of the focus is equivalent to the radius of the circular ring acoustic focused field. The movement along the axial direction of circular ring acoustic focused field can be controlled by the angle of deflection, which are set as 0, 10 respectively in our work. And we find that the circular ring acoustic focused field is deflected in a corresponding deflection angle along the Z-axis, and the moving distance is FZ = F/sin . With the theoretical analysis and the experimental simulation, it can be shown that the structure of cylindrical acoustic transducer array presented in this paper could create an adjustable circular ring acoustic focused field and can potentially provide an acoustic field scan method in detection ultrasound, medical ultrasound and other areas of a cylindrical space.
      通信作者: 郭建中, guojz@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11274217, 11574192)和陕西师范大学中央高校基本科研业务费专项资金(批准号: Gk20131009)资助的课题.
      Corresponding author: Guo Jian-Zhong, guojz@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274217, 11574192) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China, Shaanxi Normal University (Grant No. GK20131009).
    [1]

    Zhao X Y, Gang T 2009 Ultrasonics 49 126

    [2]

    Shih J L, Wu K T, Jen C K, Chiu C H, Tzeng J C, Liaw J W 2013 Sensors 13 975

    [3]

    Humeida Y, Wilcox P D, Todd M D, Drinkwater B W 2014 NDT E. Int. 68 43

    [4]

    Ennaceur C, Mudge P, Bridge B, Kayous M, Gan T H 2007 Insight 49 217

    [5]

    Lin S C S, Tittmann B R, Huang T J 2012 J. Appl. Phys. 111 123510

    [6]

    Celli P, Gonella S 2014 J. Appl. Phys. 115 103502

    [7]

    Park C M, Lee S H 2015 J. Appl. Phys. 117 034904

    [8]

    Alagoz S, Alagoz B B, Sahin A, Nur S 2015 Chin. Phys. B 24 046201

    [9]

    Yu J B, Ma H, Wang J F, Li Y F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [10]

    Azar L, Shi Y, Wooh S C 2000 NDTE Int. 33 189

    [11]

    Sun F, Zeng Z M, Jin S J, Chen S L 2013 J. Syst. Simul. 25 1108 (in Chinese) [孙芳, 曾周末, 靳世久, 陈世利 2013 系统仿真学报 25 1108]

    [12]

    Zhang B X, Wang W L 2008 Acta Phys. Sin. 57 3613 (in Chinese) [张碧星,王文龙 2008 物理学报 57 3613]

    [13]

    Ellens N, Hynynen K 2014 Med. Phys. 41 072902

    [14]

    Hu D, Wang Q, Xiao K, Ma Y H 2012 Procedia Eng. 43 459

    [15]

    Wooh S C, Shi Y J 1999 Wave Mot. 29 245

    [16]

    Wooh S C, Shi Y J 1999 J. Nondestr. Eval. 18 39

    [17]

    Wooh S C, Shi Y J 1998 J. Ultrasonics 36 737

    [18]

    Zhang B X, Shi F F, Wu X M, Gong J J, Zhang C G 2010 Chin. Phys. Lett. 27 094301

    [19]

    Xu F, Lu M Z, Wan M X, Fang F 2010 Acta Phys. Sin. 59 1349 (in Chinese) [徐丰,陆明珠,万明习,方飞 2010 物理学报 59 1349]

    [20]

    Sun F, Zeng Z M, Wang X Y, Jin S J, Zhan X L 2011 Acta Phys. Sin. 60 094301 (in Chinese) [孙芳,曾周末,王晓媛,靳世久,詹湘琳 2011 物理学报 60 094301]

    [21]

    Yu L L, Shou W D, Hui C 2011 Chin. Phys. Lett. 28 104302

    [22]

    Yu L L, Shou W D, Hui C 2012 Commun. Theor. Phys. 57 285

    [23]

    Smith M L, Roddewig M R, Strovink K M, Scales J A 2013 Acoust. Today 9 22

    [24]

    He Z Y 2014 Bio.-Med. Mater. Eng. 24 1201

    [25]

    Satyanarayan L, Sridhar C, Krishnamurthy C V, Balasubramaniam K 2007 Int. J. Press Vessels Piping 84 716

    [26]

    Tayel M, Ismail N, Talaat A 2006 National Radio Science Conference, Proceedings of the 23rd National Conference Menoufiya, Egypt, March 14-16, 2006 p1

    [27]

    Lin S Y, Sang Y J, Tian H 2007 Acta Acust. 32 310 (in Chinese) [林书玉, 桑永杰, 田华 2007 声学学报 32 310]

    [28]

    Liu S Q, Lin S Y 2009 Sensor Actuat. A: Phys. 155 175

    [29]

    Neild A, Hutchins D A, Robertson T J, Davis L A J, Billson D R 2005 Ultrasonics 43 183

  • [1]

    Zhao X Y, Gang T 2009 Ultrasonics 49 126

    [2]

    Shih J L, Wu K T, Jen C K, Chiu C H, Tzeng J C, Liaw J W 2013 Sensors 13 975

    [3]

    Humeida Y, Wilcox P D, Todd M D, Drinkwater B W 2014 NDT E. Int. 68 43

    [4]

    Ennaceur C, Mudge P, Bridge B, Kayous M, Gan T H 2007 Insight 49 217

    [5]

    Lin S C S, Tittmann B R, Huang T J 2012 J. Appl. Phys. 111 123510

    [6]

    Celli P, Gonella S 2014 J. Appl. Phys. 115 103502

    [7]

    Park C M, Lee S H 2015 J. Appl. Phys. 117 034904

    [8]

    Alagoz S, Alagoz B B, Sahin A, Nur S 2015 Chin. Phys. B 24 046201

    [9]

    Yu J B, Ma H, Wang J F, Li Y F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [10]

    Azar L, Shi Y, Wooh S C 2000 NDTE Int. 33 189

    [11]

    Sun F, Zeng Z M, Jin S J, Chen S L 2013 J. Syst. Simul. 25 1108 (in Chinese) [孙芳, 曾周末, 靳世久, 陈世利 2013 系统仿真学报 25 1108]

    [12]

    Zhang B X, Wang W L 2008 Acta Phys. Sin. 57 3613 (in Chinese) [张碧星,王文龙 2008 物理学报 57 3613]

    [13]

    Ellens N, Hynynen K 2014 Med. Phys. 41 072902

    [14]

    Hu D, Wang Q, Xiao K, Ma Y H 2012 Procedia Eng. 43 459

    [15]

    Wooh S C, Shi Y J 1999 Wave Mot. 29 245

    [16]

    Wooh S C, Shi Y J 1999 J. Nondestr. Eval. 18 39

    [17]

    Wooh S C, Shi Y J 1998 J. Ultrasonics 36 737

    [18]

    Zhang B X, Shi F F, Wu X M, Gong J J, Zhang C G 2010 Chin. Phys. Lett. 27 094301

    [19]

    Xu F, Lu M Z, Wan M X, Fang F 2010 Acta Phys. Sin. 59 1349 (in Chinese) [徐丰,陆明珠,万明习,方飞 2010 物理学报 59 1349]

    [20]

    Sun F, Zeng Z M, Wang X Y, Jin S J, Zhan X L 2011 Acta Phys. Sin. 60 094301 (in Chinese) [孙芳,曾周末,王晓媛,靳世久,詹湘琳 2011 物理学报 60 094301]

    [21]

    Yu L L, Shou W D, Hui C 2011 Chin. Phys. Lett. 28 104302

    [22]

    Yu L L, Shou W D, Hui C 2012 Commun. Theor. Phys. 57 285

    [23]

    Smith M L, Roddewig M R, Strovink K M, Scales J A 2013 Acoust. Today 9 22

    [24]

    He Z Y 2014 Bio.-Med. Mater. Eng. 24 1201

    [25]

    Satyanarayan L, Sridhar C, Krishnamurthy C V, Balasubramaniam K 2007 Int. J. Press Vessels Piping 84 716

    [26]

    Tayel M, Ismail N, Talaat A 2006 National Radio Science Conference, Proceedings of the 23rd National Conference Menoufiya, Egypt, March 14-16, 2006 p1

    [27]

    Lin S Y, Sang Y J, Tian H 2007 Acta Acust. 32 310 (in Chinese) [林书玉, 桑永杰, 田华 2007 声学学报 32 310]

    [28]

    Liu S Q, Lin S Y 2009 Sensor Actuat. A: Phys. 155 175

    [29]

    Neild A, Hutchins D A, Robertson T J, Davis L A J, Billson D R 2005 Ultrasonics 43 183

  • [1] 童三强, 王秉中, 王任. 用于提升有限口径辐射功率的紧耦合相控阵天线的设计. 物理学报, 2021, 70(20): 204101. doi: 10.7498/aps.70.20210309
    [2] 胡昌海, 王任, 陈传升, 王秉中. 平面相控阵超大角度扫描的阵因子分析. 物理学报, 2021, 70(9): 098401. doi: 10.7498/aps.70.20201850
    [3] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [4] 孙艳玲, 曹瑞, 王子豪, 廖家莉, 刘其鑫, 冯俊波, 吴蓓蓓. 基于光学相控阵双周期光场的关联成像. 物理学报, 2021, 70(23): 234203. doi: 10.7498/aps.70.20211208
    [5] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [6] 周彦玲, 范军, 王斌, 李兵. 水下环形凹槽圆柱体散射声场空间指向性调控. 物理学报, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [7] 杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐. 基于宽波束磁电偶极子天线的宽角扫描线性相控阵列. 物理学报, 2021, 70(1): 014101. doi: 10.7498/aps.70.20201104
    [8] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [9] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [10] 杜闯, 贾大功, 张红霞, 刘铁根, 张以谟. 环形光束锥形衍射出射光场偏振特性及光场调控. 物理学报, 2017, 66(12): 124202. doi: 10.7498/aps.66.124202
    [11] 刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣. 基于热声相控阵列的声聚焦效应. 物理学报, 2017, 66(15): 154302. doi: 10.7498/aps.66.154302
    [12] 唐文来, 项楠, 张鑫杰, 黄笛, 倪中华. 非对称弯曲微流道中粒子惯性聚焦动态过程及流速调控机理研究. 物理学报, 2015, 64(18): 184703. doi: 10.7498/aps.64.184703
    [13] 丁亚军, 钱盛友, 胡继文, 邹孝. 超声相控阵在多层媒质中的声场模式优化. 物理学报, 2012, 61(14): 144301. doi: 10.7498/aps.61.144301
    [14] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究. 物理学报, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [15] 徐丰, 陆明珠, 万明习, 方飞. 256阵元高强度聚焦超声相控阵系统误差与多焦点模式精确控制. 物理学报, 2010, 59(2): 1349-1356. doi: 10.7498/aps.59.1349
    [16] 张碧星, 王文龙. 凹面相控阵聚焦声场在液固界面上的反射和折射. 物理学报, 2008, 57(6): 3613-3619. doi: 10.7498/aps.57.3613
    [17] 张富利, 赵晓鹏. 谐振频率可调的环状开口谐振器结构及其效应. 物理学报, 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
    [18] 薛力芳, 赵启大, 刘建国, 郭 团, 黄桂岭, 刘丽辉. 基于圆环形薄壁截面梁的光纤光栅传感研究. 物理学报, 2006, 55(6): 2804-2808. doi: 10.7498/aps.55.2804
    [19] 陆明珠, 万明习, 施雨. 相控阵超声热疗场共轭直接合成的模式优化研究. 物理学报, 2001, 50(2): 347-353. doi: 10.7498/aps.50.347
    [20] 林鸿荪. 任意横向载荷下弹性圆形及圆环形薄板的弯曲. 物理学报, 1956, 12(4): 360-375. doi: 10.7498/aps.12.360
计量
  • 文章访问数:  3204
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-01
  • 修回日期:  2015-10-20
  • 刊出日期:  2016-02-05

圆环形聚焦声场的构建与调控

  • 1. 陕西师范大学物理学与信息技术学院, 应用声学研究所, 西安 710062
  • 通信作者: 郭建中, guojz@snnu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11274217, 11574192)和陕西师范大学中央高校基本科研业务费专项资金(批准号: Gk20131009)资助的课题.

摘要: 提出了一种由径向振动模式的圆环形压电换能器晶片组成的圆柱形阵列换能器结构, 依据阵元激励信号的相位调控机理, 推导了圆环形聚焦声场的调控公式, 在三维空间中构建了圆环形聚焦声场, 实现了对其聚焦区域大小、聚焦圆环半径以及轴向位置移动的调控. 理论分析和仿真研究表明, 所提出的圆柱形阵列换能器实现了对圆环形聚焦声场的调控. 为检测超声、功率超声、医学超声等应用领域提供了一种可实现的新型圆环形可调控聚焦声场.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回