搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用平面声场对非均匀大气介质光波传输相位的调控

王明军 王婉柔 李勇俊

引用本文:
Citation:

利用平面声场对非均匀大气介质光波传输相位的调控

王明军, 王婉柔, 李勇俊

Phase regulation of lightwave transmission in inhomogeneous atmospheric medium using plane acoustic field

Wang Ming-Jun, Wang Wan-Rou, Li Yong-Jun
PDF
HTML
导出引用
  • 本文基于声光效应和Gladstone–Dale关系, 推导了在平面声场扰动下, 各向同性均匀大气介质和非均匀大气介质的折射率随声压变化关系式, 建立了平面光波和拉盖尔-高斯(Laguerre-Gaussian, LG)光束通过经平面声波扰动的均匀大气和非均匀大气介质的传输模型. 结果表明, 经平面声场扰动后, 均匀大气介质折射率分布呈层均匀的周期性分布. 对于大气压强纵向变化的大尺度角度, 平面声场对非均匀大气折射率的分布情况影响不明显; 而对于小尺度角度, 非均匀大气折射率会随高度的增加逐渐减小, 并且随声压的影响而产生波动. 平面声波扰动均匀大气介质时, 会使平面光波的等相位面因声波的影响产生明显波动; LG光束相位会发生旋转, 且总会回到初始相位. 平面声波扰动非均匀大气介质时, 会使平面光波的相位变化会随着声波的变化规律产生周期性的变化, 光程整体为倾斜的平面, 但由于声波的扰动, 光程会产生波动; LG光束的相位仍会发生旋转, 但与均匀介质不同的是, 由于其折射率随高度的变化, 其相位不会回到初始相位.
    Based on the acousto-optic effect and the Gladstone–Dale relationship, the relationship about variations of the refractive index of the isotropic homogeneous atmospheric medium and the inhomogeneous atmospheric medium with the sound pressure under the disturbance of the plane sound field is derived. Models for the transmission of plane light waves and Laguerre-Gaussian beams through homogeneous atmospheric medium and inhomogeneous atmospheric medium disturbed by plane acoustic waves are established. The results show that the refractive index distribution of the homogeneous atmospheric medium exhibits a homogeneous periodic distribution after being disturbed by the plane sound field. For large-scale angles of longitudinal variation of atmospheric pressure, the plane sound field has little effect on the distribution of the refractive index of the inhomogeneous atmosphere. For small-scale angles, the inhomogeneous atmospheric refractive index gradually decreases with height and fluctuates with the influence of sound pressure. When the plane acoustic wave disturbs the homogeneous atmospheric medium, the isophase plane of the plane light wave will fluctuate significantly due to the influence of the acoustic wave. The phase of the LG beam rotates and always returns to the original phase. When the plane acoustic wave disturbs the inhomogeneous atmospheric medium, the phase change of the plane light wave will change periodically with the change law of the sound wave. The overall optical path is an inclined plane, but due to the disturbance of the sound wave, the optical path will fluctuate. The phase of the LG beam still rotates, but unlike the homogeneous medium, its phase does not return to its original phase due to the change of its refractive index with height.
      通信作者: 王明军, wangmingjun@xaut.edu.cn
    • 基金项目: 国家自然科学基金重大研究计划(批准号: 92052106)、国家自然科学基金(批准号: 61771385)、陕西省杰出青年科学基金(批准号: 2020JC-42)和固体激光技术重点实验室开放基金(批准号: 6142404190301)资助的课题.
      Corresponding author: Wang Ming-Jun, wangmingjun@xaut.edu.cn
    • Funds: Project supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China (Grant No. 92052106), the National Natural Science Foundation of China (Grant No. 61771385), the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2020JC-42), and the Open Fund Project of Science and Technology on Solid-State Laser Laboratory, China (Grant No. 6142404190301).
    [1]

    Adler R 1967 IEEE spectr. 4 42Google Scholar

    [2]

    Torras-Rosell A, Barrera-Figueroa S, Jacobsen F 2012 J. Acoust. Soc. Am. 131 3786Google Scholar

    [3]

    Certon D, Ferin G, Matar O B, Guyonvarch J, Remenieras J P, Patat F 2004 Ultrasonics 42 465Google Scholar

    [4]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M 2012 Nat. Photonics 6 488Google Scholar

    [5]

    Ramachandran S, Kristensen P, Yan M F 2009 Opt. Lett. 34 2525Google Scholar

    [6]

    Weisbuch G, Garbay F 1979 Am. J. Phys. 47 355Google Scholar

    [7]

    Pitts T A, Greenleaf J F 2000 J. Acoust. Soc. Am. 108 2873Google Scholar

    [8]

    Yamaguchi K, Choi P K 2006 Jpn. J. Appl. Phys. 45 4621Google Scholar

    [9]

    周慧婷, 吕朋, 廖长义, 王华, 沈勇 2012 光学学报 32 6Google Scholar

    Zhou H T, Lv P, Liao C Y, Wang H, Shen Y 2012 Acta Opt. Sin. 32 6Google Scholar

    [10]

    Farhat M, Guenneau S, Bagci H 2013 Phys. Rev. Lett. 111 237404Google Scholar

    [11]

    Ishikawa K, Yatabe K, Chitanont N, Ikeda Y, Oikawa Y, Onuma T, Niwa H, Yoshii M 2016 Opt. Express 24 12922Google Scholar

    [12]

    Gladstone J H, Dale T P 1863 Philos. Trans. R. Soc. London 153 317

    [13]

    Ishikawa K, Yatabe K, Ikeda Y, Oikawa Y 2015 12 th Western Pacific Acoustics Conference Singapore, December 6-10, 2015 pp165–169

    [14]

    程建春 2012 声学原理 (北京: 科学出版社) 第341页

    Cheng J C 2012 Principles of Acoustic (Beijing: Science Press) p32 (in Chinese)

    [15]

    Gong S H, Yan D, Wang X 2015 Radio Sci. 50 983Google Scholar

    [16]

    Gong S H, Liu Y, Hou M Y, Guo L X 2017 Computational and Experimental Studies of Acoustic Waves (New York: IntechOpen) p124

    [17]

    Abdullah-Al-Mamun M, Voelz D 2020 Opt. Eng. 59 081802Google Scholar

    [18]

    Rüeger J M 2002 Refractive indices of light, infrared and radio waves in the atmosphere (Sydney: School of Surveying and Spatial Information Systems, University of New South Wales)

    [19]

    Luo H, Wen S, Shu W, Tang Z, Zou Y, Fan D 2008 Phys. Rev. A 78 1Google Scholar

    [20]

    丁攀峰, 蒲继雄 2011 物理学报 60 094204Google Scholar

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204Google Scholar

    [21]

    Yang S, Wang J, Guo M, Qin Z, Li J 2020 Opt. Commun. 465 125559Google Scholar

  • 图 1  参考坐标系及不同类型声源所导致均匀介质折射率分布示意图

    Fig. 1.  Reference coordinate system and schematic diagram of refractive index distribution of uniform medium caused by different types of sound sources.

    图 2  不同声源扰动均匀介质折射率分布三维图 (a) 平面波声源; (b) 球面波声源; (c) 柱面波声源

    Fig. 2.  Three-dimensional diagram of refractive index distribution of homogeneous medium perturbed by different sound sources: (a) Plane wave sound source; (b) spherical wave sound source; (c) cylindrical wave sound source.

    图 3  不同声源扰动均匀介质折射率分布二维图 (a) 平面波声源; (b) 球面波声源; (c) 柱面波声源

    Fig. 3.  Two-dimensional diagram of the refractive index distribution of homogeneous medium perturbed by different sound sources: (a) Plane wave sound source; (b) spherical wave sound source; (c) cylindrical wave sound source.

    图 4  声波扰动非均匀大气介质折射率随高度和距离变化 (a) 大气压强纵向变化大尺度; (b) 大气压强纵向变化小尺度

    Fig. 4.  Variation of refractive index with height and distance of inhomogeneous atmospheric medium perturbed by acoustic waves: (a) Large-scale longitudinal variation of atmospheric pressure; (b) small-scale longitudinal variation of atmospheric pressure.

    图 5  非均匀介质折射率随高度变化曲线 (a) 不同声波频率; (b) 不同声压

    Fig. 5.  Variation curve of refractive index of inhomogeneous medium with height: (a) Different sound wave frequencies; (b) different sound pressures

    图 6  平面光波通过平面声场扰动的大气介质模型

    Fig. 6.  The atmospheric medium model of plane light wave perturbed by plane sound field.

    图 7  均匀大气介质中平面光波的相位变化 (a) 未进入声场(z = 0 m, p = 10 Pa); (b) 通过声场后(z = 20 m, p = 10 Pa)

    Fig. 7.  Phase change of plane light waves in homogeneous atmospheric medium: (a) Without entering the sound field (z = 0 m, p = 10 Pa); (b) after passing through the sound field (z = 20 m, p = 10 Pa).

    图 8  均匀大气介质中平面光波的光程 (a)无声场(z = 20 m, p = 0 Pa); (b) 有声场(z = 20 m, p = 10 Pa)

    Fig. 8.  Optical path of plane light waves in homogeneous atmospheric medium: (a) Without sound field (z = 20 m, p = 0 Pa); (b) with sound field (z = 20 m, p = 10 Pa).

    图 9  非均匀大气介质中平面光波的相位变化 (a) 未进入声场(z = 0 m, p = 10 Pa); (b) 通过声场后(z = 20 m, p = 10 Pa)

    Fig. 9.  Phase change of plane light waves in inhomogeneous atmospheric medium: (a) Without entering the sound field (z = 0 m, p = 10 Pa); (b) after passing through the sound field (z = 20 m, p = 10 Pa)

    图 10  非均匀大气介质中平面光波的光程 (a) 无声场(z = 20 m, p = 0 Pa); (b) 有声场(z = 20 m, p = 10 Pa)

    Fig. 10.  Optical path of plane light waves in inhomogeneous atmospheric medium: (a) Without sound field (z = 20 m, p = 0 Pa); (b) with sound field (z = 20 m, p = 10 Pa).

    图 11  LG光束通过平面声场扰动的大气介质模型

    Fig. 11.  The atmospheric medium model of LG beam perturbed by the plane sound field.

    图 12  均匀介质折射率随高度变化曲线

    Fig. 12.  Variation curve of refractive index of homogeneous medium with height

    图 13  LG光束进入声场扰动的均匀介质相位随高度变化情况 (a) 未进入声场; (b) 进入无声场介质; (c) 进入平面声场扰动的均匀介质

    Fig. 13.  The phase variation of LG beam entering the homogeneous medium disturbed by the sound field: (a) Without entering the sound field; (b) entering the medium without sound field; (c) entering the homogeneous medium disturbed by the plane sound field.

    图 14  LG光束进入声场扰动的非均匀介质相位随高度变化情况 (a) 进入无声场非均匀介质; (b) 进入平面声场扰动的非均匀介质

    Fig. 14.  The phase variation of the LG beam entering the inhomogeneous medium disturbed by the sound field: (a) Entering the inhomogeneous medium without sound field; (b) entering the inhomogeneous medium with plane sound field disturbance.

  • [1]

    Adler R 1967 IEEE spectr. 4 42Google Scholar

    [2]

    Torras-Rosell A, Barrera-Figueroa S, Jacobsen F 2012 J. Acoust. Soc. Am. 131 3786Google Scholar

    [3]

    Certon D, Ferin G, Matar O B, Guyonvarch J, Remenieras J P, Patat F 2004 Ultrasonics 42 465Google Scholar

    [4]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M 2012 Nat. Photonics 6 488Google Scholar

    [5]

    Ramachandran S, Kristensen P, Yan M F 2009 Opt. Lett. 34 2525Google Scholar

    [6]

    Weisbuch G, Garbay F 1979 Am. J. Phys. 47 355Google Scholar

    [7]

    Pitts T A, Greenleaf J F 2000 J. Acoust. Soc. Am. 108 2873Google Scholar

    [8]

    Yamaguchi K, Choi P K 2006 Jpn. J. Appl. Phys. 45 4621Google Scholar

    [9]

    周慧婷, 吕朋, 廖长义, 王华, 沈勇 2012 光学学报 32 6Google Scholar

    Zhou H T, Lv P, Liao C Y, Wang H, Shen Y 2012 Acta Opt. Sin. 32 6Google Scholar

    [10]

    Farhat M, Guenneau S, Bagci H 2013 Phys. Rev. Lett. 111 237404Google Scholar

    [11]

    Ishikawa K, Yatabe K, Chitanont N, Ikeda Y, Oikawa Y, Onuma T, Niwa H, Yoshii M 2016 Opt. Express 24 12922Google Scholar

    [12]

    Gladstone J H, Dale T P 1863 Philos. Trans. R. Soc. London 153 317

    [13]

    Ishikawa K, Yatabe K, Ikeda Y, Oikawa Y 2015 12 th Western Pacific Acoustics Conference Singapore, December 6-10, 2015 pp165–169

    [14]

    程建春 2012 声学原理 (北京: 科学出版社) 第341页

    Cheng J C 2012 Principles of Acoustic (Beijing: Science Press) p32 (in Chinese)

    [15]

    Gong S H, Yan D, Wang X 2015 Radio Sci. 50 983Google Scholar

    [16]

    Gong S H, Liu Y, Hou M Y, Guo L X 2017 Computational and Experimental Studies of Acoustic Waves (New York: IntechOpen) p124

    [17]

    Abdullah-Al-Mamun M, Voelz D 2020 Opt. Eng. 59 081802Google Scholar

    [18]

    Rüeger J M 2002 Refractive indices of light, infrared and radio waves in the atmosphere (Sydney: School of Surveying and Spatial Information Systems, University of New South Wales)

    [19]

    Luo H, Wen S, Shu W, Tang Z, Zou Y, Fan D 2008 Phys. Rev. A 78 1Google Scholar

    [20]

    丁攀峰, 蒲继雄 2011 物理学报 60 094204Google Scholar

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204Google Scholar

    [21]

    Yang S, Wang J, Guo M, Qin Z, Li J 2020 Opt. Commun. 465 125559Google Scholar

  • [1] 吕宇曦, 王晨, 段添期, 赵彤, 常朋发, 王安帮. 级联声光器件与回音壁模式微腔实现非对称传输. 物理学报, 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [2] 张若羽, 李培丽. 基于一维耦合腔光子晶体的声光可调谐平顶滤波器的研究. 物理学报, 2021, 70(5): 054208. doi: 10.7498/aps.70.20201461
    [3] 张若羽, 李培丽, 高辉. 基于光学tamm态的声光开关的研究. 物理学报, 2020, 69(16): 164204. doi: 10.7498/aps.69.20200396
    [4] 孙宏祥, 方欣, 葛勇, 任旭东, 袁寿其. 基于蜷曲空间结构的近零折射率声聚焦透镜. 物理学报, 2017, 66(24): 244301. doi: 10.7498/aps.66.244301
    [5] 唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜. 地基气辉成像干涉仪探测高层大气风场的定标研究. 物理学报, 2017, 66(13): 130601. doi: 10.7498/aps.66.130601
    [6] 周志刚, 宗谨, 王文广, 厚美瑛. 颗粒样品形变对声波传播影响的实验探究. 物理学报, 2017, 66(15): 154502. doi: 10.7498/aps.66.154502
    [7] 戚志明, 梁文耀. 表层厚度渐变一维耦合腔光子晶体的反射相位特性及其应用. 物理学报, 2016, 65(7): 074201. doi: 10.7498/aps.65.074201
    [8] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [9] 程杨, 姚佰承, 吴宇, 王泽高, 龚元, 饶云江. 基于倏逝场耦合的石墨烯波导光传输相位特性仿真与实验研究. 物理学报, 2013, 62(23): 237805. doi: 10.7498/aps.62.237805
    [10] 施展, 陈来柱, 佟永帅, 郑智滨, 杨水源, 王翠萍, 刘兴军. Terfenol-D/PZT磁电复合材料的磁电相位移动研究. 物理学报, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [11] 陈小艺, 刘曼, 李海霞, 张美娜, 宋洪胜, 滕树云, 程传福. 弱散射体产生的菲涅耳极深区散斑场相位涡旋演化的实验研究. 物理学报, 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [12] 刘启能. 研究一维掺杂声子晶体缺陷模的解析方法. 物理学报, 2011, 60(4): 044302. doi: 10.7498/aps.60.044302
    [13] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [14] 徐 敏, 张月蘅, 沈文忠. 半导体远红外反射镜中反射率和相位研究. 物理学报, 2007, 56(4): 2415-2421. doi: 10.7498/aps.56.2415
    [15] 颜森林. 注入半导体激光器混沌调制性能与内部相位键控编码方法研究. 物理学报, 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [16] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究. 物理学报, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [17] 颜森林. 光纤混沌相位编码保密通信系统理论研究. 物理学报, 2005, 54(5): 2000-2006. doi: 10.7498/aps.54.2000
    [18] 韩汝取, 史庆藩, 孙 刚. 声波在一维易膨胀介质中传播的计算机模拟. 物理学报, 2005, 54(5): 2188-2193. doi: 10.7498/aps.54.2188
    [19] 段文山, 洪学仁. 弱相对论等离子体横向扰动下的离子声孤波. 物理学报, 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [20] 吴福根, 刘有延. 二维周期性复合介质中声波带隙结构及其缺陷态. 物理学报, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
计量
  • 文章访问数:  2130
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-17
  • 修回日期:  2022-04-19
  • 上网日期:  2022-08-09
  • 刊出日期:  2022-08-20

/

返回文章
返回