-
采用粘合法制备了叠层结构的块体Terfenol-D/PZT磁电复合材料, 测量了不同频率下的磁电回线, 采用新的极坐标下的方式做图. 从极坐标下的磁电回线中可以看出, 随直流磁场的变化, 非谐振频率下的磁电相位发生了轻微移动, 移动幅度随频率的增加而增加;而在谐振频率下, 伴随着巨磁电效应, 磁电相位发生了显著移动, 移动幅度达到了近90°. 与粉末Terfenol-D/环氧树脂/PZT磁电复合材料对比之后表明, 非谐振频率下块体Terfenol-D/PZT的磁电相位移动主要由涡流引起; 而谐振频率下大幅度相位移动则主要来源于Terfenol-D的磁致弹性变化.Bulk Terfenol-D/PZT composite material with laminated structure is prepared by sticky combination method. The magnetoelectric hysteresis loops under different frequencies are measured and analyzed by new plotting method in the polar coordinates. The results show that tiny phase drift occur in a non-resonant-frequency magnetoelectric hysteresis loop and significant phase drift as large as 90 degrees accompanied with a giant magnetoelectric effect occurs in a resonant-frequency magnetoelectric hysteresis loop. Terfenol-D powder/Epoxy/PZT composite material is prepared by fill method and used as contrast material. Comparison reveals that the phase drift in the non-resonant frequency magnetoelectric hysteresis loop is induced by eddy current in the bulk ferromagnetic constituent, while around the resonant frequency, the significant phase drift is derived from the variation of the elastic property induced by the applying magnetic field.
-
Keywords:
- magnetoelectric effect /
- phase /
- resonance /
- eddy current
[1] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
[2] Chun S H, Chai Y S, Jeon B G, Kim H J, Oh Y S, Kim I, Kim H, Jeon B J, Haam S Y, Park J Y, Lee S H, Chung J H, Park J H, Kim K H 2012 Phys. Rev. Lett. 108 177201
[3] Li T, Jia L J, Zhang H W, Yin S M, Chen S C 2009 Electron. Compon. Mater. 28 71 (in Chinese) [李涛, 贾利军, 张怀武, 殷水明, 陈世钗 2009 电子元件与材料 28 71]
[4] Zhai J Y, Cai N, Shi Z, Lin Y H, Nan C W 2004 J. Appl. Phys. 95 5685
[5] Ryu J, Carazo A V, Uchino K, Kim H 2001 J. Electroceram. 7 17
[6] Ryu J, Priya S, Carazo A V, Uchino K, Kim H 2001 J. Am. Ceram. Soc. 84 2905
[7] Nan C W, Li M, Huang J H 2001 Phys. Rev. B 63 144415
[8] Zhai J Y, Xing Z P, Dong S X, Li J F, Viehland D 2006 Appl. Phys. Lett. 88 062510
[9] Dong S X, Li J F, Viehland D 2004 Appl. Phys. Lett. 84 4188
[10] Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776
[11] Dong S X, Li J F, Viehland D, Cheng J, Cross L E 2004 Appl. Phys. Lett. 85 3534
[12] Dong S X, Zhai J Y, Li J F, Viehland D, Bichurin M I 2006 Appl. Phys. Lett. 89 243512
[13] Dong S X, Zhai J Y, Priya S, Li J F, Viehland D 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 1124
-
[1] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
[2] Chun S H, Chai Y S, Jeon B G, Kim H J, Oh Y S, Kim I, Kim H, Jeon B J, Haam S Y, Park J Y, Lee S H, Chung J H, Park J H, Kim K H 2012 Phys. Rev. Lett. 108 177201
[3] Li T, Jia L J, Zhang H W, Yin S M, Chen S C 2009 Electron. Compon. Mater. 28 71 (in Chinese) [李涛, 贾利军, 张怀武, 殷水明, 陈世钗 2009 电子元件与材料 28 71]
[4] Zhai J Y, Cai N, Shi Z, Lin Y H, Nan C W 2004 J. Appl. Phys. 95 5685
[5] Ryu J, Carazo A V, Uchino K, Kim H 2001 J. Electroceram. 7 17
[6] Ryu J, Priya S, Carazo A V, Uchino K, Kim H 2001 J. Am. Ceram. Soc. 84 2905
[7] Nan C W, Li M, Huang J H 2001 Phys. Rev. B 63 144415
[8] Zhai J Y, Xing Z P, Dong S X, Li J F, Viehland D 2006 Appl. Phys. Lett. 88 062510
[9] Dong S X, Li J F, Viehland D 2004 Appl. Phys. Lett. 84 4188
[10] Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776
[11] Dong S X, Li J F, Viehland D, Cheng J, Cross L E 2004 Appl. Phys. Lett. 85 3534
[12] Dong S X, Zhai J Y, Li J F, Viehland D, Bichurin M I 2006 Appl. Phys. Lett. 89 243512
[13] Dong S X, Zhai J Y, Priya S, Li J F, Viehland D 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 1124
计量
- 文章访问数: 8286
- PDF下载量: 930
- 被引次数: 0