搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁致伸缩/压电层叠复合材料磁电效应分析

周勇 李纯健 潘昱融

引用本文:
Citation:

磁致伸缩/压电层叠复合材料磁电效应分析

周勇, 李纯健, 潘昱融

Magnetoelectric effect analysis of magnetostrictive/piezoelectric laminated composites

Zhou Yong, Li Chun-Jian, Pan Yu-Rong
PDF
导出引用
  • 采用有限元分析软件COMSOL5.0建立了三维悬臂梁模型,分析了磁致伸缩/压电/磁致伸缩叠层复合材料的磁电系数αME,并就几何参数对复合结构磁电系数的影响进行了优化分析.首先,利用稳态求解器研究了磁电层状复合结构内部的应力、应变、位移以及电势分布情况,利用瞬态求解分析了磁电复合结构各变量动态分布规律;其次,应用小信号频域分析研究了该结构的谐振频率以及在不同偏置磁场对输出电压的影响,结果表明,随着直流偏置磁场的增加,输出电压逐渐减小.改变复合材料不同层的厚度,分析了磁电层与压电层厚度比tm/tp对磁电系数的影响,结果表明,随着厚度比增加,αME逐渐增大,其增加速率逐渐减小;最后,分析了磁电系数αME随复合结构面积、长宽比的变化情况.分析表明,αME随磁电复合结构面积的增加逐渐增加,其增加速率逐渐减小;当磁电复合结构面积恒定时,其磁电系数随长宽比L/W增加表现出先增加后减小的趋势,存在最优值.
    Based on the finite element analysis software COMSOL5.0,a three-dimensional (3D) model of cantilever beam composed of magnetostrictive/piezoelectric/magnetostrictive laminated composites is established using the piezoelectric module and magnetic field module.The magneto electro coupling coefficient αME of the composite is analyzed.The effect of geometrical parameter on magnetoelectric coefficient is studied,and the geometrical parameters are optimized. Firstly,the stress,strain,displacement and potential distributions of the magnetoelectric layered structure are analyzed by the steady-state solver.The stress and strain concentrate on the fixed terminal while the maximum displacement exists in the free end of the structure.As a result,the potential appears between the upper and lower surface of the piezoelectric layer and the voltage distribution is not uniform.The output voltage in the fixed terminal is larger than that in the free end,which is about 49 V compared with 42 V in the free end.And the dynamic distributions of various variables in magnetoelectric composite structure are analyzed by transient solution.Secondly,the resonance frequency of the structure and the influence of the bias magnetic field on the output voltage are studied by small signal analysis in frequency domain.The results show that the output voltage decreases with the increase of Hdc.Also,the maximum output voltage is about 3.36 V at the second-order resonance frequency,which is far higher than the voltage at the first-order resonant frequency in the condition of bias magnetic fields Hdc=200 Oe and alternating magnetic fields Hac=1 Oe.The reason is that the composite structure has a larger deformation at the second-order resonance frequency.Furthermore,the effect of thickness ratio between magnetostrictive and piezoelectric layers tm/tp on coupling coefficient is analyzed by changing the thickness of magnetostrictive layer and piezoelectric layer,respectively.The results show that the magnetoelectric coefficient increases with the augment of the thickness ratio,but the increasing rate decreases gradually.The research also shows that it has a greater influence on magnetoelectric coefficient to change tp rather than tm.Finally,the variations of magnetoelectric coefficient with the area of composite structure and the aspect ratio are analyzed.The results show that the magnetoelectric coefficient increases gradually with the augment of magnetoelectric composite area,but the increasing rate declines gradually.With the constant composite area,the magnetoelectric coefficient first increases and then drops with the increase of aspect ratio L/W,demonstrating the existence of an optimized value.Besides,the width W acts more importantly than length L because strain concentrates on the fixed terminal along
      通信作者: 周勇, zhouyong@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61601231)、江苏省自然科学基金(批准号:BK20140999)和江苏省气象传感网技术工程中心开放基金(批准号:KDXG1302)资助的课题.
      Corresponding author: Zhou Yong, zhouyong@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61601231), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140999), and the Open Fund of Jiangsu Technology and Engineering Center of Meteorological Sensor Network, China (Grant No. KDXG1302).
    [1]

    Landau L D, Lifshitz E M, Skykes J B, Bell J S 1961 Phys. Today 14 48

    [2]

    Astrov D N 1961 Sov. Phys. JETP 13 729

    [3]

    Bichurin M I, Petrov V M, Srinivasan G 2003 Phys. Rev. B 68 575

    [4]

    Bichurin M I, Fillipov D A, Petrov V M 2003 Phys. Rev. B 68 399

    [5]

    Lam K H, Lo C Y, Dai J Y, Chan H L W, Luo H S 2011 J. Appl. Phys. 109 031101

    [6]

    Chen Z, Su Y 2014 J. Appl. Phys. 115 3382

    [7]

    Fetisov Y K, Fetisov L Y, Srinivasan G 2009 Appl. Phys. Lett. 94 R123

    [8]

    Filippov D A, Bichurin M I, Nan C W, Liu J M 2005 J. Appl. Phys. 97 145

    [9]

    Bichurin M I, Petrov V M, Srinivasan G 2003 Phys. Rev. B 68 575

    [10]

    Bichurin M I, Kornev I A, Petrov V M, Tatarenko A S 2001 Phys. Rev. B 64 115

    [11]

    Shi Z, Nan C W 2004 Acta Phys. Sin. 53 2766 (in Chinese) [施展, 南策文 2004 物理学报 53 2766]

    [12]

    Dong S, Li J F, Viehland D 2004 J. Appl. Phys. 95 2625

    [13]

    Wan H, Xie L Q, Wu X Z, Liu X C 2005 Acta Phys. Sin. 54 3872 (in Chinese) [万红, 谢立强, 吴学忠, 刘希从 2005 物理学报 54 3872]

    [14]

    Liu Y X, Wan J G, Liu J M 2003 J. Appl. Phys. 94 5111

    [15]

    Wan J G, Li Z Y, Wang Y 2005 Appl. Phys. Lett. 86 266

    [16]

    Nan C W, Bichurin M I, Dong S 2008 J. Appl. Phys. 103 031101

    [17]

    Pan E, Wang R 2009 J. Phys. D: Appl. Phys. 42 245503

    [18]

    Martins P 2013 Adv. Funct. Mater. 23 3371

    [19]

    Kannan K S 1997 Ph. D. Dissertation (Maryland Co: University of Maryland College Park)

    [20]

    Zhou H M 2007 Ph. D. Dissertation(Lanzhou: Lanzhou University) (in Chinese) [周浩淼 2007 博士学位论文 (兰州: 兰州大学)]

    [21]

    Zadov B, Elmalem A, Paperno E Gluzman I, Nudelman A, Levron D, Grosz A, Lineykin S, Liverts E 2012 Advances in Condensed Matter Physics 2012 448

    [22]

    Wen J B, Zhang J J, Gao Y W 2017 Composite Structures 166 163

    [23]

    Evans P G, Dapino M J 2011 IEEE Trans. Magn. 47 221

    [24]

    Ye J J 2014 M. S. Dissertation (Nanjing: Nanjing Normal University) (in Chinese) [叶晶晶 2014 硕士学位论文 (南京: 南京师范大学)]

    [25]

    Yang C H, Wen Y M, Li P, Bian L X 2008 Acta Phys. Sin. 57 7292 (in Chinese) [阳昌海, 文玉梅, 李平, 卞雷祥 2008 物理学报 57 7292]

  • [1]

    Landau L D, Lifshitz E M, Skykes J B, Bell J S 1961 Phys. Today 14 48

    [2]

    Astrov D N 1961 Sov. Phys. JETP 13 729

    [3]

    Bichurin M I, Petrov V M, Srinivasan G 2003 Phys. Rev. B 68 575

    [4]

    Bichurin M I, Fillipov D A, Petrov V M 2003 Phys. Rev. B 68 399

    [5]

    Lam K H, Lo C Y, Dai J Y, Chan H L W, Luo H S 2011 J. Appl. Phys. 109 031101

    [6]

    Chen Z, Su Y 2014 J. Appl. Phys. 115 3382

    [7]

    Fetisov Y K, Fetisov L Y, Srinivasan G 2009 Appl. Phys. Lett. 94 R123

    [8]

    Filippov D A, Bichurin M I, Nan C W, Liu J M 2005 J. Appl. Phys. 97 145

    [9]

    Bichurin M I, Petrov V M, Srinivasan G 2003 Phys. Rev. B 68 575

    [10]

    Bichurin M I, Kornev I A, Petrov V M, Tatarenko A S 2001 Phys. Rev. B 64 115

    [11]

    Shi Z, Nan C W 2004 Acta Phys. Sin. 53 2766 (in Chinese) [施展, 南策文 2004 物理学报 53 2766]

    [12]

    Dong S, Li J F, Viehland D 2004 J. Appl. Phys. 95 2625

    [13]

    Wan H, Xie L Q, Wu X Z, Liu X C 2005 Acta Phys. Sin. 54 3872 (in Chinese) [万红, 谢立强, 吴学忠, 刘希从 2005 物理学报 54 3872]

    [14]

    Liu Y X, Wan J G, Liu J M 2003 J. Appl. Phys. 94 5111

    [15]

    Wan J G, Li Z Y, Wang Y 2005 Appl. Phys. Lett. 86 266

    [16]

    Nan C W, Bichurin M I, Dong S 2008 J. Appl. Phys. 103 031101

    [17]

    Pan E, Wang R 2009 J. Phys. D: Appl. Phys. 42 245503

    [18]

    Martins P 2013 Adv. Funct. Mater. 23 3371

    [19]

    Kannan K S 1997 Ph. D. Dissertation (Maryland Co: University of Maryland College Park)

    [20]

    Zhou H M 2007 Ph. D. Dissertation(Lanzhou: Lanzhou University) (in Chinese) [周浩淼 2007 博士学位论文 (兰州: 兰州大学)]

    [21]

    Zadov B, Elmalem A, Paperno E Gluzman I, Nudelman A, Levron D, Grosz A, Lineykin S, Liverts E 2012 Advances in Condensed Matter Physics 2012 448

    [22]

    Wen J B, Zhang J J, Gao Y W 2017 Composite Structures 166 163

    [23]

    Evans P G, Dapino M J 2011 IEEE Trans. Magn. 47 221

    [24]

    Ye J J 2014 M. S. Dissertation (Nanjing: Nanjing Normal University) (in Chinese) [叶晶晶 2014 硕士学位论文 (南京: 南京师范大学)]

    [25]

    Yang C H, Wen Y M, Li P, Bian L X 2008 Acta Phys. Sin. 57 7292 (in Chinese) [阳昌海, 文玉梅, 李平, 卞雷祥 2008 物理学报 57 7292]

  • [1] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [2] 施展, 陈来柱, 佟永帅, 郑智滨, 杨水源, 王翠萍, 刘兴军. Terfenol-D/PZT磁电复合材料的磁电相位移动研究. 物理学报, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [3] 李平, 黄娴, 文玉梅. 偏置电压对磁致伸缩/压电层合换能结构磁电性能影响. 物理学报, 2012, 61(13): 137504. doi: 10.7498/aps.61.137504
    [4] 毕科, 艾迁伟, 杨路, 吴玮, 王寅岗. Ni/Pb(Zr,Ti)O3/TbFe2层状复合材料的谐振磁电特性研究. 物理学报, 2011, 60(5): 057503. doi: 10.7498/aps.60.057503
    [5] 李廷先, 张铭, 王光明, 郭宏瑞, 李扩社, 严辉. La2/3Sr1/3MnO3/BaTiO3复合薄膜的制备及其电致磁电效应研究. 物理学报, 2011, 60(8): 087501. doi: 10.7498/aps.60.087501
    [6] 陈蕾, 李平, 文玉梅, 王东. 高磁导率材料FeCuNbSiB对超磁致伸缩/压电层合材料磁电性能的影响. 物理学报, 2011, 60(6): 067501. doi: 10.7498/aps.60.067501
    [7] 鲍丙豪, 骆英. 有限输入阻抗下压电/磁伸层叠材料磁电效应理论及实验. 物理学报, 2011, 60(1): 017508. doi: 10.7498/aps.60.017508
    [8] 鲍丙豪, 骆英. 纵向极化与磁化叠层复合材料磁电效应理论及计算. 物理学报, 2011, 60(6): 067504. doi: 10.7498/aps.60.067504
    [9] 马静, 施展, 林元华, 南策文. 准2-2型磁电多层复合材料的磁电性能. 物理学报, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [10] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [11] 张延芳, 文玉梅, 李平, 卞雷祥. 采用阶梯形弹性基底的磁致伸缩/压电复合结构磁电响应研究. 物理学报, 2009, 58(1): 546-553. doi: 10.7498/aps.58.546
    [12] 曹鸿霞, 张 宁. 磁电双层膜层间耦合的弹性力学研究. 物理学报, 2008, 57(5): 3237-3243. doi: 10.7498/aps.57.3237
    [13] 曹鸿霞, 张 宁. 过渡族元素掺杂BaTiO3-Tb1-xDyxFe2-y层状复合材料中的磁电效应. 物理学报, 2008, 57(10): 6582-6586. doi: 10.7498/aps.57.6582
    [14] 阳昌海, 文玉梅, 李 平, 卞雷祥. 偏置磁场对磁致伸缩/弹性/压电层合材料磁电效应的影响. 物理学报, 2008, 57(11): 7292-7297. doi: 10.7498/aps.57.7292
    [15] 杨 帆, 文玉梅, 李 平, 郑 敏, 卞雷祥. 考虑损耗的磁致/压电层合材料谐振磁电响应分析. 物理学报, 2007, 56(6): 3539-3545. doi: 10.7498/aps.56.3539
    [16] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析. 物理学报, 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [17] 万 红, 谢立强, 吴学忠, 刘希从. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [18] 万 红, 沈仁发, 吴学忠. 对称磁电层合板磁电转换效应理论研究. 物理学报, 2005, 54(3): 1426-1430. doi: 10.7498/aps.54.1426
    [19] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算. 物理学报, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
    [20] 陈钢进, 夏钟福. 多孔聚四氟乙烯/氟代乙烯丙烯共聚物复合驻极体材料的压电效应研究. 物理学报, 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
计量
  • 文章访问数:  4142
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-25
  • 修回日期:  2018-01-19
  • 刊出日期:  2018-04-05

磁致伸缩/压电层叠复合材料磁电效应分析

  • 1. 南京信息工程大学电子与信息工程学院, 南京 210044;
  • 2. 江苏省气象传感网技术工程中心, 南京 210044
  • 通信作者: 周勇, zhouyong@nuist.edu.cn
    基金项目: 国家自然科学基金(批准号:61601231)、江苏省自然科学基金(批准号:BK20140999)和江苏省气象传感网技术工程中心开放基金(批准号:KDXG1302)资助的课题.

摘要: 采用有限元分析软件COMSOL5.0建立了三维悬臂梁模型,分析了磁致伸缩/压电/磁致伸缩叠层复合材料的磁电系数αME,并就几何参数对复合结构磁电系数的影响进行了优化分析.首先,利用稳态求解器研究了磁电层状复合结构内部的应力、应变、位移以及电势分布情况,利用瞬态求解分析了磁电复合结构各变量动态分布规律;其次,应用小信号频域分析研究了该结构的谐振频率以及在不同偏置磁场对输出电压的影响,结果表明,随着直流偏置磁场的增加,输出电压逐渐减小.改变复合材料不同层的厚度,分析了磁电层与压电层厚度比tm/tp对磁电系数的影响,结果表明,随着厚度比增加,αME逐渐增大,其增加速率逐渐减小;最后,分析了磁电系数αME随复合结构面积、长宽比的变化情况.分析表明,αME随磁电复合结构面积的增加逐渐增加,其增加速率逐渐减小;当磁电复合结构面积恒定时,其磁电系数随长宽比L/W增加表现出先增加后减小的趋势,存在最优值.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回