搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含突发E层的电离层模型建立及其在测高中的应用

罗欢 肖卉

引用本文:
Citation:

含突发E层的电离层模型建立及其在测高中的应用

罗欢, 肖卉

Establishment of ionospheric model containing sporadic E and its applications in target height measurement

Luo Huan, Xiao Hui
PDF
导出引用
  • 针对高频射线测高模型未考虑电离层突发E层(sporadic-E,Es层)的问题,从电离层物理结构特性入手,结合实测的电离层垂测数据,在多层准抛物模型的基础上研究了含Es层的电离层模型及其在目标高度测量中的应用.首先,利用反转抛物线特性模拟了含Es的电离层模型,并得到了等离子体频率与高度的关系;然后,利用该模型分析了射线的电离层传输路径与发射仰角/频率的关系以及高频射线微多径特征与目标高度的关系;最后,结合含Es的电离层模型与射线微多径特征,提出了基于分段爬山搜索的快速匹配域测高方法,该方法能大大减少搜索时间.研究结果表明:含Es的电离层模型和提出的测高方法能准确估计出目标高度,并具有较强的实时性.
    Ionosperic sporadic-E layer (Es layer) is the irregular structure in ionosphere which often occurs in summer of China, but the current model of height estimation with high frequency rays does not consider the Es layer, which often makes a large error in the estimation of the target height. In this paper, the parameters of the actual ionosphere are analyzed by using the measured data of the ionospheric vertical measurement station and the information about the variation of the ionosphere in southeastern China which was obtained in recent years. The measured data indicate that the probability of occurrence of Es in China is relatively high, especially in summer. When Es appears in summer, the probability of its cut-off frequency greater than 4.5 MHz reaches up to 83.6%, therefore, it is necessary to study the target height measurement model and algorithm when the ionosphere contains Es. Firstly, on the basis of the quasi-parabolic segments ionosphere model and real ionosphere parameters, the ionosphere model containing the Es layer is established. In this model, Es layer and its connection layer with the E layer are represented by parabola and reverse parabola respectively. Then, the high frequency transmission characteristics of the target micro multipath are analyzed based on Es model. The simulation shows that 4 multipath echoes can be simulated by the characteristics of different slant ranges and Doppler frequencies in the multiple echoes of the target. By matching the simulated 4 multipath echoes with the actual high frequency echo of the target, when the matching degree reaches a maximum value, the estimated height value can be obtained. Finally, based on the micro multipath difference between high frequency rays and the ionospheric model with Es layer, a height estimation method using matched-field processing and hill climbing search algorithm is proposed. This method can greatly reduce the search time for obtaining the real height value. Through theoretical analysis and experimental verification, the relationships between the ionospheric plasma frequency and height, between the transmission path of high frequency rays and the elevation angle/transmitting frequency, and between the micro path characteristics of high frequency rays and the height of target are obtained. Ionospheric model with the Es layer and the new target height measurement method based on the matched-field processing can accurately estimate the height of the target and have a faster calculation speed.
      通信作者: 罗欢, luohuan5566@sina.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号:51309232)资助的课题.
      Corresponding author: Luo Huan, luohuan5566@sina.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51309232).
    [1]

    Forbes J M, Palo S E, Zhang X 2000 J. Atmosph. Solar -Terr. Phys. 62 685

    [2]

    vauli P, Bourdillon A 2008 J. Atmosph. Solar -Terr. Phys. 70 1904

    [3]

    Han Y M, Hu J, Kong Q Y, Fan J M 2009 Chin. J. Radio Sci. 24 929 (in Chinese) [韩彦明, 胡进, 孔庆颜, 凡俊梅 2009 电波科学学报 24 929]

    [4]

    Hao S J, Zhang W C, Zhang Y B, Yang J T, Ma G L 2017 Acta Phys. Sin. 66 119401 (in Chinese) [郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林 2017 物理学报 66 119401]

    [5]

    Croft T A, Hoogasian H 1968 Radio Sci. 3 69

    [6]

    Dyson P L, Bennett J A 1988 J. Atmosph. Solar -Terr. Phys. 50 251

    [7]

    Norman R J 1997 Radio Sci. 32 397

    [8]

    Bilitza D 2001 Radio Sci. 36 261

    [9]

    Reinisch B W, Huang X Q 2000 Adv. Space Res. 25 81

    [10]

    Scotto C 2009 Adv. Space Res. 44 756

    [11]

    Papazoglou M, Krolik J L 1999 IEEE Trans. Signal Process. 47 966

    [12]

    Papazoglou M 1998 Ph. D. Dissertation (Durham: Duke University)

    [13]

    Smith L G, Mechtly E A 1972 Radio Sci. 7 367

    [14]

    Whitehead J D 1961 Nature 20 49

    [15]

    Whitehead J D 1989 J. Atmosph. Solar -Terr. Phys. 51 401

    [16]

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302 (in Chinese) [聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 070302]

    [17]

    Sun L F, Zhao B Q, Yue X A, Mao T 2014 Chin. J. Geophys. –CH. 57 3625

    [18]

    Norman R J, Dyson P L, Bennett J A 1998 S-RAMP Proceedings of the AIP Congress Australia, September, 1998 p147

    [19]

    Tan H 2004 Ph. D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences) (in Chinese) [谭辉 2004 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)]

    [20]

    Li H, Che H Q, Wu J, Wu J, Xu B 2011 Chin. J. Radio Sci. 26 311 (in Chinese) [李辉, 车海琴, 吴健, 吴军, 徐彬 2011 电波科学学报 26 311]

    [21]

    Wu X, Chen J W, Bao Z, Guo D Y 2014 Acta Phys. Sin. 63 119401 (in Chinese) [吴瑕, 陈建文, 鲍拯, 郭德阳 2014 物理学报 63 119401]

    [22]

    Hinson J M, Staddon J E R 1983 J. Exp. Anal. Behav. 40 321

    [23]

    Anderson C W, Green S D, Kingsley S P 1996 IEE Proc. -Radar, Sonar Navig. 143 281

  • [1]

    Forbes J M, Palo S E, Zhang X 2000 J. Atmosph. Solar -Terr. Phys. 62 685

    [2]

    vauli P, Bourdillon A 2008 J. Atmosph. Solar -Terr. Phys. 70 1904

    [3]

    Han Y M, Hu J, Kong Q Y, Fan J M 2009 Chin. J. Radio Sci. 24 929 (in Chinese) [韩彦明, 胡进, 孔庆颜, 凡俊梅 2009 电波科学学报 24 929]

    [4]

    Hao S J, Zhang W C, Zhang Y B, Yang J T, Ma G L 2017 Acta Phys. Sin. 66 119401 (in Chinese) [郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林 2017 物理学报 66 119401]

    [5]

    Croft T A, Hoogasian H 1968 Radio Sci. 3 69

    [6]

    Dyson P L, Bennett J A 1988 J. Atmosph. Solar -Terr. Phys. 50 251

    [7]

    Norman R J 1997 Radio Sci. 32 397

    [8]

    Bilitza D 2001 Radio Sci. 36 261

    [9]

    Reinisch B W, Huang X Q 2000 Adv. Space Res. 25 81

    [10]

    Scotto C 2009 Adv. Space Res. 44 756

    [11]

    Papazoglou M, Krolik J L 1999 IEEE Trans. Signal Process. 47 966

    [12]

    Papazoglou M 1998 Ph. D. Dissertation (Durham: Duke University)

    [13]

    Smith L G, Mechtly E A 1972 Radio Sci. 7 367

    [14]

    Whitehead J D 1961 Nature 20 49

    [15]

    Whitehead J D 1989 J. Atmosph. Solar -Terr. Phys. 51 401

    [16]

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302 (in Chinese) [聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 070302]

    [17]

    Sun L F, Zhao B Q, Yue X A, Mao T 2014 Chin. J. Geophys. –CH. 57 3625

    [18]

    Norman R J, Dyson P L, Bennett J A 1998 S-RAMP Proceedings of the AIP Congress Australia, September, 1998 p147

    [19]

    Tan H 2004 Ph. D. Dissertation (Wuhan: Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences) (in Chinese) [谭辉 2004 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)]

    [20]

    Li H, Che H Q, Wu J, Wu J, Xu B 2011 Chin. J. Radio Sci. 26 311 (in Chinese) [李辉, 车海琴, 吴健, 吴军, 徐彬 2011 电波科学学报 26 311]

    [21]

    Wu X, Chen J W, Bao Z, Guo D Y 2014 Acta Phys. Sin. 63 119401 (in Chinese) [吴瑕, 陈建文, 鲍拯, 郭德阳 2014 物理学报 63 119401]

    [22]

    Hinson J M, Staddon J E R 1983 J. Exp. Anal. Behav. 40 321

    [23]

    Anderson C W, Green S D, Kingsley S P 1996 IEE Proc. -Radar, Sonar Navig. 143 281

  • [1] 赵海生, 许正文, 徐朝辉, 薛昆, 郑延帅, 谢守志, 冯杰, 吴健. 基于化学物质释放的电离层闪烁抑制方法研究. 物理学报, 2019, 68(10): 109401. doi: 10.7498/aps.68.20182281
    [2] 罗欢, 肖卉. 电离层回波谱展宽机理分析及频谱锐化方法. 物理学报, 2019, 68(21): 219401. doi: 10.7498/aps.68.20190887
    [3] 聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸. 中纬度地区电离层偶发E层对量子卫星通信性能的影响. 物理学报, 2017, 66(7): 070302. doi: 10.7498/aps.66.070302
    [4] 郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林. 中低纬度电离层偶发E层电波传播建模. 物理学报, 2017, 66(11): 119401. doi: 10.7498/aps.66.119401
    [5] 郝书吉, 李清亮, 杨巨涛, 吴振森. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析. 物理学报, 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [6] 陈丽娟, 鲁世平, 莫嘉琪. 磁层-电离层耦合过程中等离子体粒子运动的周期轨. 物理学报, 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [7] 胡耀垓, 赵正予, 张援农. 不同释放高度的化学物质的电离层扰动特性. 物理学报, 2013, 62(20): 209401. doi: 10.7498/aps.62.209401
    [8] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟. 物理学报, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [9] 盛峥. 电离层电子总含量不同时间尺度的预报模型研究. 物理学报, 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [10] 汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东. 低纬电离层人工调制所激发的ELF波射线追踪. 物理学报, 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [11] 胡耀垓, 赵正予, 项薇, 张援农. 人工电离层洞形态调制及其对短波传播的影响. 物理学报, 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [12] 洪振杰, 刘荣建, 郭鹏, 董乃铭. 非球对称电离层掩星数据反演. 物理学报, 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [13] 徐贤胜, 洪振杰, 郭鹏, 刘荣建. COSMIC掩星电离层资料反演以及结果验证. 物理学报, 2010, 59(3): 2163-2168. doi: 10.7498/aps.59.2163
    [14] 胡耀垓, 赵正予, 张援农. 几种典型化学物质的电离层释放效应研究. 物理学报, 2010, 59(11): 8293-8303. doi: 10.7498/aps.59.8293
    [15] 石润, 赵正予. 磁倾角对电离层Alfven谐振器影响的初步研究. 物理学报, 2009, 58(7): 5111-5117. doi: 10.7498/aps.58.5111
    [16] 李晓峰, 谢拥军, 樊君, 王元源. 考虑棱边散射的半空间复杂导体目标高频分析方法. 物理学报, 2009, 58(2): 908-913. doi: 10.7498/aps.58.908
    [17] 李晓峰, 谢拥军, 王 鹏, 杨 锐. 半空间电大涂敷目标散射的高频分析方法. 物理学报, 2008, 57(5): 2930-2935. doi: 10.7498/aps.57.2930
    [18] 黄朝松, 李钧, M .C. KELLEY. 大气重力波产生中纬电离层不均匀体的理论. 物理学报, 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [19] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响. 物理学报, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [20] 陈茂康, 张煦. 研究中国天空电离层之初草报告. 物理学报, 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
计量
  • 文章访问数:  5632
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-03
  • 修回日期:  2018-01-02
  • 刊出日期:  2018-04-05

/

返回文章
返回