搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于场变换的毫米波半波片设计

王成 赵俊明 姜田 冯一军

引用本文:
Citation:

基于场变换的毫米波半波片设计

王成, 赵俊明, 姜田, 冯一军

Millimeter-wave half-waveplate based on field transformation

Wang Cheng, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun
PDF
导出引用
  • 极化转换是电磁波调控的重要研究方向之一.本文基于场变换理论提出一种宽入射角的宽带毫米波半波片.基于等效媒质理论,该半波片可由亚波长厚度的两种介电常数不同的材料周期性排布后旋转45°得到.通过设计控制两种材料的介电常数、高度比值以及整个半波片的厚度可以在毫米波段实现极化转换的功能,此设计具有低损耗和高转化效率的特点.此半波片能实现横电波与横磁波的相互转换以及圆极化波的相互转换,极化转换-3 dB相对带宽达49%.仿真和实测结果相符,验证了该半波片宽带高效的极化转换效果.在入射角为60°时,极化转换-3 dB带宽依然能够达到36%左右.
    Over the last decades, manipulating polarization has received much attention due to its wide applications in science and technology. In this paper, a half-waveplate based on a field transformation (FT) method is proposed and investigated in order to convert polarization, which works at millimeter-wave band with a wide incident angle and broad working bandwidth.Inspired by the FT method, we confine our attention to a two-dimensional (2D) case of in-plane wave propagation on the x-y plane, with both material properties and fields unchanged in the z direction. The fields are denoted with a subscript “(0)” in the virtual space. Then a series of theoretical calculations is analyzed in detail. Under the guidance of theoretical analysis, it is shown that the main job for realizing this half-wavepalate is to obtain a material with specific permittivity and permeability. The proposed waveplate is composed of periodically arranged two dielectric layers each with sub-wavelength in height. By using the effective medium theory, the effective electromagnetic (EM) parameters of the waveplate can be tuned by manipulating the heights of the two dielectric layers. Among them one layer is a material with a permittivity of 10 and height of 0.68 mm, and another layer material has a permittivity of 1, and height of 5 mm. We alternately arrange the two materials along one direction periodically to obtain a waveplate for realizing the TE-to-TM and LCP-to-RCP conversion. The thickness of whole waveplate is 5.5 mm. A broadband EM half-waveplate is achieved in millimeter-wave region, which possesses a nearly 90% conversion efficiency across the frequency band from 24 GHz to 37 GHz. At the same time, we also find that when the incident angle gradually increases from 0° to 60°, the performances of polarization conversion efficiency and working bandwidth are still good. For the incident angle of 60°, a 3-dB bandwidth over 26-33 GHz is still achieved. The performance of the waveplate is verified through both full-wave simulation and experimental measurement, which are in good agreement with each other. Meanwhile, three-dimensional (3D) printing technology makes the sample fabricated more easily. Another advantage of our design is that the 3D printing technology can be used to carry out the experimental fabrication, which may pave a new way to manufacturing more microwave devices.
      通信作者: 赵俊明, jmzhao@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61671231,61571218,61571216,61301017,61371034)资助的课题.
      Corresponding author: Zhao Jun-Ming, jmzhao@nju.edu.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant Nos. 61671231, 61571218, 61571216, 61301017, 61371034).
    [1]

    Elston S J, Brown B, Preist T W, Sambles J R 1991 Phys. Rev. B 44 3483

    [2]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp604-607

    [3]

    Gansel J K 2009 Science 325 1513

    [4]

    Zhao Y, Belkin M, Alu A 2012 Nat. Commun. 3 870

    [5]

    Hooper I R, Sambles J R 2002 Opt. Lett. 27 2152

    [6]

    Wu L 2014 Appl. Phys. A 116 014

    [7]

    Hallam B T, Hooper I R, Sambles J R 2004 Appl. Phys. Lett. 84 849

    [8]

    Hao J 2006 Phys. Rev. Lett. 99 063908

    [9]

    Ye Y, He S 2010 Appl. Phys. Lett. 96 203501

    [10]

    Zhao Y, Belkin M A, Alu A 2012 Nat. Commun 3 870

    [11]

    Dietlein C, Luukanen A, Popovic Z, Grossman E A 2007 IEEE Trans. Antennas Propag 55 1804

    [12]

    Doumanis E 2012 IEEE Trans. Antennas Propag 60 212

    [13]

    Zhu H, Cheung S, Chung K, Yuk T 2013 IEEE Trans. Antennas Propag 61 4615

    [14]

    Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116

    [15]

    Liu Y C, Yuan J, Yin G, He S, Ma Y G 2015 Appl. Phys. Lett 107 011902

    [16]

    Zhang B, Luo Y, Liu X, Barbastathis G 2011 Phys. Rev. Lett. 106 033901

    [17]

    Gharghi M, Gladden C, Zentgraf T, Liu Y, Yin X, Valentine J, Zhang X 2011 Nano Lett. 11 2825

    [18]

    Alu A, Engheta 2008 Phys. Rev. Lett. 100 113901

    [19]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901

    [20]

    Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337

    [21]

    Ma H F, Cui T J 2010 Nat. Commun 1 21

    [22]

    Zhang B L, Luo Y, Liu X G, Barbastathis G 2011 Phys. Rev. Lett. 106 033901

    [23]

    Luo Y, Chen H, Zhang J, Ran L, Kong J A 2008 Phys. Rev. B 77 125127

    [24]

    Chen H, Hou B, Chen S, Ao X, Wen W, Chan C T 2009 Phys. Rev. Lett. 102 183903

    [25]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [26]

    Kwon D H, Werner D H 2008 Opt. Express 16 18731

    [27]

    Lai Y, Ng J, Chen H Y, Han D Z, Xiao J J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902

    [28]

    Li C, Meng X, Liu X, Li F, Fang G, Chen H, Chan C T 2010 Phys. Rev. Lett. 105 233906

    [29]

    Liu F, Liang Z X, Li J S 2013 Physical Review Letters 111 033901

    [30]

    Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, SajadHaq, Hao Y 2015 Sci. Reports 5 17532

  • [1]

    Elston S J, Brown B, Preist T W, Sambles J R 1991 Phys. Rev. B 44 3483

    [2]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp604-607

    [3]

    Gansel J K 2009 Science 325 1513

    [4]

    Zhao Y, Belkin M, Alu A 2012 Nat. Commun. 3 870

    [5]

    Hooper I R, Sambles J R 2002 Opt. Lett. 27 2152

    [6]

    Wu L 2014 Appl. Phys. A 116 014

    [7]

    Hallam B T, Hooper I R, Sambles J R 2004 Appl. Phys. Lett. 84 849

    [8]

    Hao J 2006 Phys. Rev. Lett. 99 063908

    [9]

    Ye Y, He S 2010 Appl. Phys. Lett. 96 203501

    [10]

    Zhao Y, Belkin M A, Alu A 2012 Nat. Commun 3 870

    [11]

    Dietlein C, Luukanen A, Popovic Z, Grossman E A 2007 IEEE Trans. Antennas Propag 55 1804

    [12]

    Doumanis E 2012 IEEE Trans. Antennas Propag 60 212

    [13]

    Zhu H, Cheung S, Chung K, Yuk T 2013 IEEE Trans. Antennas Propag 61 4615

    [14]

    Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116

    [15]

    Liu Y C, Yuan J, Yin G, He S, Ma Y G 2015 Appl. Phys. Lett 107 011902

    [16]

    Zhang B, Luo Y, Liu X, Barbastathis G 2011 Phys. Rev. Lett. 106 033901

    [17]

    Gharghi M, Gladden C, Zentgraf T, Liu Y, Yin X, Valentine J, Zhang X 2011 Nano Lett. 11 2825

    [18]

    Alu A, Engheta 2008 Phys. Rev. Lett. 100 113901

    [19]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901

    [20]

    Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337

    [21]

    Ma H F, Cui T J 2010 Nat. Commun 1 21

    [22]

    Zhang B L, Luo Y, Liu X G, Barbastathis G 2011 Phys. Rev. Lett. 106 033901

    [23]

    Luo Y, Chen H, Zhang J, Ran L, Kong J A 2008 Phys. Rev. B 77 125127

    [24]

    Chen H, Hou B, Chen S, Ao X, Wen W, Chan C T 2009 Phys. Rev. Lett. 102 183903

    [25]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [26]

    Kwon D H, Werner D H 2008 Opt. Express 16 18731

    [27]

    Lai Y, Ng J, Chen H Y, Han D Z, Xiao J J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902

    [28]

    Li C, Meng X, Liu X, Li F, Fang G, Chen H, Chan C T 2010 Phys. Rev. Lett. 105 233906

    [29]

    Liu F, Liang Z X, Li J S 2013 Physical Review Letters 111 033901

    [30]

    Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, SajadHaq, Hao Y 2015 Sci. Reports 5 17532

  • [1] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [2] 冯加林, 施宏宇, 王远, 张安学, 徐卓. 基于场变换理论的大角度涡旋电磁波生成方法. 物理学报, 2020, 69(13): 135201. doi: 10.7498/aps.69.20200365
    [3] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [4] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [5] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [6] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计. 物理学报, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [7] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [8] 李浩, 朱京平, 张宁, 张云尧, 强帆, 宗康. 半波片角度失配对通道调制型偏振成像效果的影响及补偿. 物理学报, 2016, 65(13): 134202. doi: 10.7498/aps.65.134202
    [9] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [10] 梁文耀, 张玉霞, 陈武喝. 低对称性光子晶体超宽带全角自准直传输的机理研究. 物理学报, 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [11] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [12] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [13] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [14] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢. 人工磁导体正交布阵的宽带低雷达截面反射屏. 物理学报, 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [15] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [16] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件. 物理学报, 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [17] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光. 物理学报, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [18] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [19] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究. 物理学报, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [20] 马 晶, 张光宇, 戎亦文, 谭立英. 基于半波片的偏振跟踪理论分析. 物理学报, 2006, 55(1): 24-28. doi: 10.7498/aps.55.24
计量
  • 文章访问数:  6679
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-02
  • 修回日期:  2018-02-10
  • 刊出日期:  2018-04-05

/

返回文章
返回