搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于场变换理论的大角度涡旋电磁波生成方法

冯加林 施宏宇 王远 张安学 徐卓

引用本文:
Citation:

基于场变换理论的大角度涡旋电磁波生成方法

冯加林, 施宏宇, 王远, 张安学, 徐卓

Wide-angle method for vortex electromagnetic wave generation using field transformation

Feng Jia-Lin, Shi Hong-Yu, Wang Yuan, Zhang An-Xue, Xu Zhuo
PDF
HTML
导出引用
  • 场变换是一种与入射角度无关的新型电磁变换方法, 可对电磁波极化和阻抗进行调控. 本文提出了一种基于场变换理论的大角度入射涡旋电磁波产生方法. 基于该方法设计了一种用于涡旋电磁波生成的人工媒质, 并通过对其仿真验证了所提出的方法. 设计的人工媒质为多层环形结构, 可以透射生成2阶涡旋电磁波, 并且具有较好的入射角度稳定性, 在60°斜入射时仍能产生涡旋电磁波.
    The Field transformation (FT) is a novel theory for controlling the polarization and impedance of electromagnetic waves, which is independent on the angle of incidence. Thus, the FT method is superior for wide-angle devices design. In this paper, we propose a wide-angle method for generating vortex beam based on the FT theory. According to this method, an artificial media for vortex beam generation is designed and simulated, which demonstrates the proposed method. The designed artificial media is a multi-layered structure, which can generate vortex beam of order 2 with an incident angle stability up to 60°.
      通信作者: 施宏宇, honyo.shi1987@gmail.com
      Corresponding author: Shi Hong-Yu, honyo.shi1987@gmail.com
    [1]

    Bliokh K Y, Bekshaev A Y, Nori F 2013 New J. Phys. 15 33026Google Scholar

    [2]

    Menglin C, Li J, Wei S 2018 Appl. Sci. 8 362Google Scholar

    [3]

    Wang J, Yang J Y, Fazal I M 2012 Nat. Photonics 6 488Google Scholar

    [4]

    苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪 2008 物理学报 57 3016Google Scholar

    Su Z K, Wang F Q, Lu Y Q, Jin R B, Liang R B, Liu S H 2008 Acta Phys. Sin. 57 3016Google Scholar

    [5]

    Lemaitre-Auger P, Abielmona S, Caloz C 2013 IEEE Trans. Antennas Propag. 61 1838Google Scholar

    [6]

    David G 2003 Nature 424 810Google Scholar

    [7]

    刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854Google Scholar

    Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854Google Scholar

    [8]

    Oemrawsingh S S R, Houwelingen J A W, Eliel E R, Woerdman J P, Verstegen E J K, Kloosterboer J G 2004 Appl. Opt. 43 688Google Scholar

    [9]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [10]

    Turnbull G A, Robertson D A, Smith G M, Allen L, Padgett M J 1996 Opt. Commun. 127 183Google Scholar

    [11]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [12]

    Paterson C, Smith R 1996 Opt. Commun. 124 121Google Scholar

    [13]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thide B, Forozesh K 2010 IEEE Trans. Antennas Propag. 2 565

    [14]

    Genevet P, Y u, N, Aieta F, Lin J, Kats M A, Blanchard R 2012 Appl. Phys. Lett. 100 1

    [15]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C 2015 Sci. Adv. 1 e1500396Google Scholar

    [16]

    Huang L, Chen X, Holger Mühlenbernd, Li G, Zhang S 2012 Nano Lett. 12 5750Google Scholar

    [17]

    Arbabi A, Horie Y, Bagheri M 2015 Nat. Nanotechnol. 10 937Google Scholar

    [18]

    Yue F, Wen D, Xin J, Gerardot B D, Li J, Chen X 2016 ACS Photonics acsphotonics 6 b00392

    [19]

    Yang H, Niu J, Zhang K, Ding X, Wu Q 2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT) Harbin, China, August 20–22, 2016 p552

    [20]

    Tamburini F, Mari E, Thideì Bo, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [21]

    Vaishnavi V, Priya V G, Sharmila Devi A, Manoj Kumar M, Venkatesh S, Sundaram G A 2014 International Conference on Communication and Signal Processing Melmaruvathur, India, April 3–5, 2014 p1414

    [22]

    Liu F, Liang Z, Li J 2013 Phys. Rev. Lett. 111 033901Google Scholar

    [23]

    Liu F, Li J S 2015 Phys. Rev. Lett. 114 103902Google Scholar

    [24]

    Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, Haq S, Hao Y 2015 Sci. Rep. 5 17532Google Scholar

    [25]

    Shi H Y, Hao Y 2013 Opt. Express 26 20132

    [26]

    Shi H, Giddens H, Hao Y 2019 IET Microwaves Antennas Propag. 13 1450Google Scholar

    [27]

    Shi H Y, Giddens H, Hao Y 2017 IEEE Antennas Wirel. Propag. Lett. 16 2869

    [28]

    Chen M L N, Jiang L J, Sha W E I 2019 IEEE Antennas Wirel. Propag. Lett. 18 477Google Scholar

    [29]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2016 Science 314 977

    [30]

    Born M, Wolf E, Bhatia A B 2002 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th (expanded) (Cambridge: Cambridge University Press) pp220–225

    [31]

    Chen M L N, Jiang L J, Sha W E I 2016 J. Appl. Phys. 119 064506Google Scholar

    [32]

    Kang M, Chen J, Wang X, Wang H 2012 J.Opt. Soc. Am. B: Opt. Phys. 29 572Google Scholar

  • 图 1  场变换示意图

    Fig. 1.  Schematic diagram of the FT medium.

    图 2  人工双折射材料: $xyz$轴绕y轴旋转45°变成${x'}y{z'}$, 入射波在$xy$平面内, $\theta $为入射角, ${k_0}$是入射波的波数

    Fig. 2.  Artificial birefringence medium: The $xyz$ coordinate is twisted along the y -axis by 45° to the ${x'}y{z'}$ coordinate. The incident plane is x-y plane, $\theta $ is the incident angle, ${k_0}$ is the wave vector of the incident wave.

    图 3  Pancharatnam-Berry(几何)相位, 入射波沿y方向照射到单元上, 单元绕y轴旋转$\alpha $, 带来$2\alpha $的相位变化

    Fig. 3.  Pancharatnam-Berry phase: When the EM wave incident on the unit along y direction, and the unit rotates $\alpha $ around the y axis, the phase changed $2\alpha $.

    图 4  单元模型

    Fig. 4.  The model of unit cell.

    图 5  (a) ${J_{xx}}$${J_{yy}}$的幅度 ; (b) ${J_{xx}}$${J_{yy}}$的相位

    Fig. 5.  (a) The amplitude of ${J_{xx}}$ and ${J_{yy}}$; (b) the phase of ${J_{xx}}$ and ${J_{yy}}$.

    图 6  ${J_{xy}}$${J_{yx}}$的幅度

    Fig. 6.  The amplitude of ${J_{xy}}$ and ${J_{yx}}$.

    图 7  (a)旋转所形成的介质圆环的主视图, 由100个圆环组成每个圆环的半径为4 mm; (b)介质圆环的侧视图

    Fig. 7.  (a) Main view of dielectric rings, it’s consists of 100 rings with radius of 4 mm and thickness of dielectric rings is 30 mm; (b) side view of dielectric rings.

    图 8  (a)垂直入射的透射波; (b)介质圆环周围空间的电场分布; (c)13 GHz时右旋圆极化波的幅度; (d)13 GHz时右旋圆极化波的相位

    Fig. 8.  (a) The transmission wave while incident angle is 0°; (b) E-field distribution around dielectric rings; (c) amplitude of RCP wave at 13 GHz ; (d) phase of RCP wave at 13 GHz.

    图 9  (a) 20°斜入射时的透射波; (b)介质圆环周围空间的电场分布; (c) 20°斜入射时13 GHz的右旋圆极化波的幅度; (c) 20°斜入射时在13 GHz的右旋圆极化波的相位

    Fig. 9.  (a) The transmission wave while incident angle is 20°; (b) E-field distribution around dielectric rings; (c) amplitude of RCP wave at 20° oblique incidence; (d) phase of RCP wave at 20° oblique incidence.

    图 10  (a) 40°斜入射时的透射波; (b)介质圆环周围空间的电场分布; (c) 40°斜入射时13 GHz的右旋圆极化波的幅度; (d) 40°斜入射时13 GHz的右旋圆极化波的相位

    Fig. 10.  (a) The transmission wave while incident angle is 40°; (b) E-field distribution around dielectric rings; (c) amplitude of RCP wave at 40° oblique incidence; (d) phase of RCP wave at 40° oblique incidence.

    图 11  (a) 50°斜入射时的透射波; (b)介质圆环周围空间的电场分布; (c) 50°斜入射时13 GHz的右旋圆极化波的幅度; (d) 50°斜入射时在13 GHz的右旋圆极化波的相位

    Fig. 11.  (a) The transmission wave while incident angle is 50°; (b) E-field distribution around dielectric rings; (c) amplitude of RCP wave at 50° oblique incidence; (d) phase of RCP wave at 50° oblique incidence.

    图 12  (a) 60°斜入射时的透射波; (b) 60°入射时介质圆环周围的电场分布; (c) 60°斜入射时13 GHz的右旋圆极化波的幅度; (d) 60°斜入射时13 GHz的右旋圆极化波的相位

    Fig. 12.  (a) The transmission wave while incident angle is 60°; (b) E-field distribution around dielectric rings at 60° oblique incidence; (c) amplitude of RCP wave at 60° oblique incidence; (d) phase of RCP wave at 60° oblique incidence.

    表 1  垂直入射时不同频点的右旋分量的最大值

    Table 1.  Maximum values of RCP at different frequencies when normal incidence.

    频率/GHz右旋圆极化分量最大值/dBi
    1114.70
    1215.80
    1316.90
    1417.30
    1517.50
    下载: 导出CSV

    表 2  20°斜入射时不同频点的右旋分量的最大值

    Table 2.  Maximum values of RCP at different frequencies when incident angle is 20°.

    频率/GHz右旋圆极化分量最大值/dBi
    1115.30
    1216.10
    1317.20
    1417.70
    1517.40
    下载: 导出CSV

    表 3  40°斜入射时不同频点右旋分量的最大值

    Table 3.  Maximum values of RCP at different frequencies when incident angle is 40°.

    频率/GHz右旋圆极化分量最大值/dBi
    1116.0
    1216.7
    1317.4
    1418.6
    1518.5
    下载: 导出CSV

    表 4  50°斜入射时不同频点的左旋和右旋分量的最大值

    Table 4.  Maximum values of RCP at different frequencies when incident angle is 50°.

    频率/GHz右旋圆极化分量最大值/dBi
    1116.8
    1217.2
    1317.6
    1418.6
    1519.6
    下载: 导出CSV

    表 5  60°斜入射时不同频点的左旋和右旋分量的最大值

    Table 5.  Maximum values of RCP at different frequencies when incident angle is 60°.

    频率/GHz右旋圆极化分量最大值/dBi
    1116.1
    1216.9
    1317.9
    1418.5
    1519.6
    下载: 导出CSV
  • [1]

    Bliokh K Y, Bekshaev A Y, Nori F 2013 New J. Phys. 15 33026Google Scholar

    [2]

    Menglin C, Li J, Wei S 2018 Appl. Sci. 8 362Google Scholar

    [3]

    Wang J, Yang J Y, Fazal I M 2012 Nat. Photonics 6 488Google Scholar

    [4]

    苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪 2008 物理学报 57 3016Google Scholar

    Su Z K, Wang F Q, Lu Y Q, Jin R B, Liang R B, Liu S H 2008 Acta Phys. Sin. 57 3016Google Scholar

    [5]

    Lemaitre-Auger P, Abielmona S, Caloz C 2013 IEEE Trans. Antennas Propag. 61 1838Google Scholar

    [6]

    David G 2003 Nature 424 810Google Scholar

    [7]

    刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854Google Scholar

    Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854Google Scholar

    [8]

    Oemrawsingh S S R, Houwelingen J A W, Eliel E R, Woerdman J P, Verstegen E J K, Kloosterboer J G 2004 Appl. Opt. 43 688Google Scholar

    [9]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [10]

    Turnbull G A, Robertson D A, Smith G M, Allen L, Padgett M J 1996 Opt. Commun. 127 183Google Scholar

    [11]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [12]

    Paterson C, Smith R 1996 Opt. Commun. 124 121Google Scholar

    [13]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thide B, Forozesh K 2010 IEEE Trans. Antennas Propag. 2 565

    [14]

    Genevet P, Y u, N, Aieta F, Lin J, Kats M A, Blanchard R 2012 Appl. Phys. Lett. 100 1

    [15]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C 2015 Sci. Adv. 1 e1500396Google Scholar

    [16]

    Huang L, Chen X, Holger Mühlenbernd, Li G, Zhang S 2012 Nano Lett. 12 5750Google Scholar

    [17]

    Arbabi A, Horie Y, Bagheri M 2015 Nat. Nanotechnol. 10 937Google Scholar

    [18]

    Yue F, Wen D, Xin J, Gerardot B D, Li J, Chen X 2016 ACS Photonics acsphotonics 6 b00392

    [19]

    Yang H, Niu J, Zhang K, Ding X, Wu Q 2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT) Harbin, China, August 20–22, 2016 p552

    [20]

    Tamburini F, Mari E, Thideì Bo, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [21]

    Vaishnavi V, Priya V G, Sharmila Devi A, Manoj Kumar M, Venkatesh S, Sundaram G A 2014 International Conference on Communication and Signal Processing Melmaruvathur, India, April 3–5, 2014 p1414

    [22]

    Liu F, Liang Z, Li J 2013 Phys. Rev. Lett. 111 033901Google Scholar

    [23]

    Liu F, Li J S 2015 Phys. Rev. Lett. 114 103902Google Scholar

    [24]

    Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, Haq S, Hao Y 2015 Sci. Rep. 5 17532Google Scholar

    [25]

    Shi H Y, Hao Y 2013 Opt. Express 26 20132

    [26]

    Shi H, Giddens H, Hao Y 2019 IET Microwaves Antennas Propag. 13 1450Google Scholar

    [27]

    Shi H Y, Giddens H, Hao Y 2017 IEEE Antennas Wirel. Propag. Lett. 16 2869

    [28]

    Chen M L N, Jiang L J, Sha W E I 2019 IEEE Antennas Wirel. Propag. Lett. 18 477Google Scholar

    [29]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2016 Science 314 977

    [30]

    Born M, Wolf E, Bhatia A B 2002 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th (expanded) (Cambridge: Cambridge University Press) pp220–225

    [31]

    Chen M L N, Jiang L J, Sha W E I 2016 J. Appl. Phys. 119 064506Google Scholar

    [32]

    Kang M, Chen J, Wang X, Wang H 2012 J.Opt. Soc. Am. B: Opt. Phys. 29 572Google Scholar

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究. 物理学报, 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [3] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [4] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [5] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [6] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [7] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [8] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [9] 王成, 赵俊明, 姜田, 冯一军. 基于场变换的毫米波半波片设计. 物理学报, 2018, 67(7): 070201. doi: 10.7498/aps.67.20171774
    [10] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [11] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [12] 王丛屹, 徐成, 伍瑞新. 用最小结构单元频率选择表面实现大入射角宽频带的透波材料. 物理学报, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [13] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [14] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [15] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [16] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [17] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [18] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [19] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  6733
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-06-13
  • 上网日期:  2020-06-15
  • 刊出日期:  2020-07-05

/

返回文章
返回