搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对数坐标变换的涡旋键控译码

李浪 周诗韵 高春清 付时尧

引用本文:
Citation:

基于对数坐标变换的涡旋键控译码

李浪, 周诗韵, 高春清, 付时尧

Vortex key decoding based on logarithmic coordinate transformation

LI Lang, ZHOU Shiyun, GAO Chunqing, FU Shiyao
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光子轨道角动量(OAM)为光通信提供了新的高维自由度, 有望提高光信息传输系统信道容量, 解决当前通信资源紧张的问题. OAM键控(OAM-SK)是一种新型的信息传输机制, 其中, 对OAM模式的有效识别和检测是实现OAM-SK译码的核心技术之一. 本文提出了一种基于对数极坐标变换的OAM译码系统, 首先通过设计的坐标变换光栅进行映射, 再引入优化的相位校正光栅进行补偿, 最后采用一个傅里叶变换透镜实现了OAM模式的分离. 对系统在不同光栅参数下的分束效果进行数值评估, 在实验中成功实现了–35—+31阶轨道角动量模式的分束. 进一步地, 基于该OAM解复用系统, 搭建了自由空间光数据传输演示系统, 通过引入特定译码规则, 有效克服了对数极坐标变换存在的相邻模式混叠的问题, 实现了748934个码元的无误码传输. 为未来高容量光通信系统的发展提供支持.
    Orbital angular momentum (OAM), as a novel high-dimensional degree of freedom, shows great potential applications in optical communication in improving system channel capacity and solving the problem of scarce communication resources. However, the effective recognition and detection of OAM modes are the core challenges for achieving efficient communication in such systems. In this work, an OAM decoding system consisting of a designed coordinate transformation device, a phase corrector, and a Fourier transform lens is presented based on log-polar coordinate transformation. The coordinate transformation device fabricated by liquid crystal polymer is utilized to map the incident vortex beam from polar coordinates into Cartesian coordinates, followed by the phase corrector to compensate for phase distortions into a collimated beam. Finally, the Fourier transform lens is used to separate the OAM modes at different space positions in its rear focal plane. The performance of the system is numerically evaluated in several ablation studies, and the influence of various grating parameters on beam separation efficiency is analyzed. Experimentally, the system successfully achieves the decoding of OAM modes ranging from -35 to +31 orders. Furthermore, a free-space optical communication demonstration system is constructed based on this OAM decoding system. By introducing specifically designed decoding rules, the system effectively mitigates the adjacent mode crosstalk inherent in logarithmic polar coordinate transformation and successfully transmitted 748934 symbols without errors. These favorable results highlight the capabilities of the proposed OAM-based optical communication system and provide valuable insights for developing future high-capacity optical communication networks.
  • 图 1  对数极坐标变换过程示意图 (a) 输入–7阶涡旋光束相位分布; (b)坐标变换调制相位; (c) –7阶涡旋光束对应的矩形光场相位分布; (d)校正相位; (e) –7阶涡旋光束对应的分束面光强分布; (f) 对数极坐标变换过程

    Fig. 1.  Concept of the log-polar transformation: (a) The phase distribution of the incident beam with OAM state $|-7\rangle $; (b) the phase modulation of the coordinate transformation; (c) the phase distribution of the transformed rectangular light field; (d) the phase modulation of the phase correction; (e) the sorting plane intensity of the incident beam; (f) the convert sketch of a vortex beam via the log-polar transformation.

    图 2  液晶分子主轴排布仿真效果 (a) 坐标变换器件; (b) 校正器件

    Fig. 2.  Simulated main axis arrangement of the liquid crystal molecules: (a) The arrangement distribution of the coordinate transformation device; (b) the phase corrector.

    图 3  OAM译码系统及数据传输演示装置 (a) 实验装置, 波长1645 nm的线偏振连续激光, 通过SLM后携带OAM模式, 经由透镜L1和L2构成的4-f滤波系统后在自由空间传输1 m后通过1/4波片输入OAM译码系统, 系统由坐标变换器件U、校正器件C和傅里叶变换透镜Lf组成, 最后分束面光场(傅里叶变换透镜后焦面处光场)由红外焦平面探测器CCD接收; (b) 坐标变换器件实物图; (c) 校正器件实物图; (d) OAM译码系统样机图

    Fig. 3.  Experimental setup of the OAM decoding system for data transmission demonstration: (a)Experimental setup. The incident gaussian beam is a continuous-wave laser operating at 1645 nm, which is encoded by a SLM to generate the desired OAM mode. After passing through a 4-f system composed of lenses L1 and L2, the OAM mode is transmitted 1 m in free space and then incident the OAM decoding system, which is consist of a coordinate transformation device, a phase corrector and a Fourier transformation lens. Lastly, the sorted light field (Light field at the focal plane of Fourier transformation lens) is captured by a CCD. (b) The physical image of the coordinate transformation device. (c) The physical image of the phase corrector. (d) The physical image of the OAM decoding system prototype.

    图 4  坐标变换分束效果 (a) 数值仿真不同OAM态在分束面的位置分布; (b) 数值仿真不同OAM态在分束面的水平方向归一化强度分布; (c) 实验测定不同OAM态在分束面的位置分布; (d) 实验测定不同OAM态在分束面的水平方向归一化强度分布

    Fig. 4.  Sorting performance of the coordinate transformation: (a) The simulated position for sorting different OAM states along x-axis and y-axis in the sorting plane; (b) the overlaid line scans of the simulated intensity distributions of different OAM states along the vertical direction; (c) the experimental position for sorting different OAM states along x-axis and y-axis in the sorting plane; (d) the overlaid line scans of the experimental intensity distributions of different OAM states along the vertical direction.

    图 5  OAM-SK数据传输译码过程 (a) OAM译码系统分束面; (b)译码软件界面

    Fig. 5.  Data transmission decoding of OAM-shift keying: (a) The sorting plane of the OAM decoding system with OAM states $| l\rangle $, where l = –7–+7; (b) the decoding software interface.

    表 1  码元与OAM模式编码对应表

    Table 1.  Corresponding of symbols and OAM Modes.

    码元 0 1 2 3 4 5 6 7
    OAM模式 ±2 ±3 ±4 ±5 ±6 –6 –5
    码元 8 9 A B C D E F
    OAM模式 –4 –3 –2 +2 +3 +4 +5 +6
    下载: 导出CSV
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Beth R A 1936 Phys. Rev. 50 115Google Scholar

    [3]

    Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light Sci. Appl. 8 90Google Scholar

    [4]

    Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S 2015 Adv. Opt. Photon. 7 66Google Scholar

    [5]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar

    [6]

    Fang X Y, Ren H R, Gu M 2020 Nat. Photonics 14 102Google Scholar

    [7]

    Erhard M, Fickler R, Krenn M, Zeilinger A 2017 Light Sci. Appl. 7 17146Google Scholar

    [8]

    Wang J, Liu J, Li S, Zhao Y, Du J, Zhu L 2022 Nanophotonics 11 645Google Scholar

    [9]

    Trichili A, Park K H, Zghal M, Ooi B S, Alouini M S 2019 IEEE Commun. Surv. Tutorials 21 3175Google Scholar

    [10]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214Google Scholar

    [11]

    Qiu X, Guo H, Chen L 2023 Nat. Commun. 14 8244Google Scholar

    [12]

    Vallone G, D’Ambrosio V, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F, Villoresi P 2014 Phys. Rev. Lett. 113 060503Google Scholar

    [13]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516Google Scholar

    [14]

    Du J, Wang J 2015 Opt. Lett. 40 4827Google Scholar

    [15]

    Shang Z, Fu S Y, Hai L, Zhang Z, Li L, Gao C Q 2022 Opt. Express 30 34053Google Scholar

    [16]

    Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020 Optica 7 254Google Scholar

    [17]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [18]

    Fu S Y, Zhai Y, Zhang J, Liu X, Song R, Zhou H, Gao C Q 2020 PhotoniX 1 19Google Scholar

    [19]

    Fu S Y, Wang T W, Yan Gao Y, Gao C Q 2016 Chin. Opt. Lett. 14 080501Google Scholar

    [20]

    Zhao Q, Dong M, Bai Y H, Yang Y J 2020 Photon. Res. 8 745Google Scholar

    [21]

    Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901Google Scholar

    [22]

    Zhou H L, Fu D Z, Dong J J, Zhang P, Chen D X, Cai X L, Li F L, Zhang X L 2016 Light Sci. Appl. 6 16251Google Scholar

    [23]

    Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013 Science 341 537Google Scholar

    [24]

    Wang H, Zhan Z, Hu F, Meng Y, Liu Z, Fu X, Liu Q 2023 PhotoniX 4 9Google Scholar

    [25]

    Wang J Q, Fu S Y, Shang Z J, Hai L, Gao C Q 2022 Opt. Lett. 47 1419Google Scholar

    [26]

    Zhou S Y, Li L, Gao C Q, Fu S Y 2023 Opt. Lett. 49 173

    [27]

    Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J 2010 Phys. Rev. Lett. 105 153601Google Scholar

    [28]

    Mirhosseini M, Malik M, Shi Z, Boyd R W 2013 Nat. Commun. 4 2781Google Scholar

    [29]

    Wen Y, Chremmos I, Chen Y, Zhu J, Zhang Y, Yu S 2018 Phys. Rev. Lett. 120 193904Google Scholar

    [30]

    Cheng J, Wan C H, Zhan Q W 2022 Opt. Express 30 16330Google Scholar

    [31]

    Cheng J P, Sha X B, Zhang H, Chen Q M, Qu G Y, Song Q H, Yu S M, Xiao S M 2022 Nano Lett. 22 3993Google Scholar

    [32]

    Li L, Guo Y C, Zhang Z C, Shang Z J, Li C, Wang J Q, Gao L L, Hai L, Gao C Q, Fu S Y 2023 Adv. Photonics 5 056002

    [33]

    Hossack W J, Darling A M, Dahdouh A 1987 J. Mod. Opt. 34 1235Google Scholar

    [34]

    Lavery M P J, Robertson D J, Berkhout G C G, Love G D, Padgett M J, Courtial J 2012 Opt. Express 20 2110Google Scholar

    [35]

    Lavery M P J, Robertson D J, Sponselli A, Courtial J, Steinhoff N K, Tyler G A, Wilner A E, Padgett M J 2013 New J. Phys. 15 013024Google Scholar

    [36]

    Chen P, Wei B Y, Hu W, Lu Y Q 2020 Adv. Mater. 32 1903665Google Scholar

    [37]

    Saber G, Gutiérrez-Castrejón R, Xing Z, Alam S, El-Fiky E, Ceballos-Herrera D E, Cavaliere F, Vall-Llosera G, Lessard S, Plant D V 2021 IEEE Photonics J. 13 1

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究. 物理学报, doi: 10.7498/aps.73.20240791
    [2] 张卓, 张景风, 孔令军. 基于光束偏移器的光的轨道角动量分束器. 物理学报, doi: 10.7498/aps.73.20231874
    [3] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, doi: 10.7498/aps.72.20230684
    [4] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生. 物理学报, doi: 10.7498/aps.72.20221928
    [5] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, doi: 10.7498/aps.72.20222405
    [6] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, doi: 10.7498/aps.71.20211146
    [7] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, doi: 10.7498/aps.70.20200975
    [8] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, doi: 10.7498/aps.70.20211119
    [9] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, doi: 10.7498/aps.68.20182036
    [10] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, doi: 10.7498/aps.67.20171899
    [11] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, doi: 10.7498/aps.64.140301
    [12] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, doi: 10.7498/aps.63.150301
    [13] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, doi: 10.7498/aps.61.174204
    [14] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, doi: 10.7498/aps.61.124208
    [15] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, doi: 10.7498/aps.60.014208
    [16] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, doi: 10.7498/aps.59.6159
    [17] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, doi: 10.7498/aps.58.8302
    [18] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, doi: 10.7498/aps.57.3016
    [19] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, doi: 10.7498/aps.56.2184
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, doi: 10.7498/aps.53.413
计量
  • 文章访问数:  195
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-19
  • 修回日期:  2025-01-15
  • 上网日期:  2025-01-24

/

返回文章
返回