搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响

徐梦敏 李晓庆 唐荣 季小玲

引用本文:
Citation:

风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响

徐梦敏, 李晓庆, 唐荣, 季小玲

Influence of wind-dominated thermal blooming on orbital angular momentum and phase singularity of dual-mode vortex beams

Xu Meng-Min, Li Xiao-Qing, Tang Rong, Ji Xiao-Ling
PDF
HTML
导出引用
  • 本文研究了不同风向和风速下大气非线性热晕效应对双模涡旋光束轨道角动量(orbital angular momentum, OAM )和相位奇异性的影响. 由于不同模式叠加的双模涡旋光束具有不同的对称性, 热晕效应对其的影响不仅与风速有关, 还与风向密切相关. 研究发现: 在一定风向角度下, 风速越小, 热晕效应越强, OAM值越大, 即热晕效应促进了双模涡旋光束的OAM增大. 因此, 在一定风向以及风速下双模涡旋光束可以获得大于自由空间的OAM, 并且大于单模涡旋光束的OAM. 模式越高的光束需要更小的风速才能使得OAM值大于自由空间中的OAM值. 此外, 构成双模涡旋光束的两束子光束的拓扑荷数相差越大, 不同风向下其OAM值越稳定. 另一方面, 还研究了风控热晕效应对线刃型位错奇点演化的影响, 研究表明: 线刃型位错线和风向垂直时, 位错线消失; 线刃型位错线和风向平行时, 位错线始终存在; 线刃型位错线和风向为钝角或锐角时, 位错线演化为光学涡旋对. 上述研究结果对激光大气传输和光通信领域具有理论指导意义.
    The effects of thermal blooming on orbital angular momentum (OAM) and phase singularity of dual-mode vortex beams under different wind directions and wind speeds are studied in this paper. Owing to the different symmetries of dual-mode vortex beams superimposed by different modes, the effects of thermal blooming on them depend on not only wind speed, but also wind direction. Based on the scalar wave equation and the hydrodynamic equation, a four-dimensional (4D) computer code to simulate the time-dependent propagation of dual-mode vortex beams in the atmosphere is devised by using the multiphase screen method and finite difference method. It is found that for a certain wind direction, the value of OAM increases with the wind speed decreasing because the thermal blooming becomes more serious, i.e. the thermal blooming effect promotes the OAM of dual-mode vortex beam to grow. For example, when the angle between the wind direction and the beam is 0 < θ < 50°, the OAM of the dual-mode vortex beams with a topological charge difference of 2 increases with wind speed decreasing, and there is an optimal angle ($ \theta \approx {20^ \circ } $) to maximize OAM. Therefore, for a certain wind direction and wind speed, the OAM of dual-mode vortex beam propagating in the atmosphere can be larger than that in free space, and can be larger than the OAM of single-mode vortex beam. The dual-mode vortex beam with higher modes requires smaller wind speed to make its OAM larger than the OAM in free space. In addition, the larger the difference in topological charge between the two element beams of a dual-mode vortex beam, the more stable the OAM of the dual-mode vortex beam is. On the other hand, the evolution of linear edge dislocation singularity under atmospheric thermal blooming is also investigated in this paper. When the wind direction is perpendicular to the dislocation line, the linear edge dislocation singularity disappears. If the wind direction is parallel to the dislocation line, the linear edge dislocation singularity always exists. At other angles, the linear edge dislocation singularity will evolve into optical vortex pairs. The results obtained in this paper have a certain reference value for the propagation of lasers in the atmosphere and optical communication.
      通信作者: 李晓庆, lixiaoqing912@sicnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61775152, 61505130)和四川省科技厅项目(批准号: 2022NSFSC1836)资助的课题.
      Corresponding author: Li Xiao-Qing, lixiaoqing912@sicnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775152, 61505130) and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC1836)
    [1]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation Through Random Media (2nd. Ed.) (Bellingham: SPIE Press) pp478–479

    [2]

    Sprangle P, Hafizi B, Ting A, Fischer R 2015 Appl. Opt. 54 F201Google Scholar

    [3]

    Jabczyński J K, Gontar P 2021 Def. Technol. 17 1160Google Scholar

    [4]

    Rubenchik A M, Fedoruk M P, Turitsyn S K 2009 Phys. Rev. Lett. 102 233902Google Scholar

    [5]

    Liu X Y, Qian X M, He R, Liu D D, Cui C L, Fan C Y, Yuan H 2021 Star. Atmosphere 12 1315Google Scholar

    [6]

    Allen L, Beijersbergen M W, Spreeuw R, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [7]

    Simpson N B, Dholakia K, Allen L, Padgett M J 1997 Opt. Lett. 22 52Google Scholar

    [8]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Alan E 2012 Nat. Photon. 6 488Google Scholar

    [9]

    Liu Y D, Gao C Q, Gao M W, Qi X Q, Weber H 2008 Opt. Commun. 281 3636Google Scholar

    [10]

    Gao C Q, Qi X Q, Liu Y D, Weber H 2010 Opt. Express 18 72Google Scholar

    [11]

    Lin J, Yuan X C, Tao S H, Burge R E 2005 Opt. Lett. 30 3266Google Scholar

    [12]

    Soskin M S, Gorshkov V N, Vasnetsov M V, Malos J T, Heckenberg N R 1997 Phys. Rev. A 56 4064Google Scholar

    [13]

    黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云 2014 物理学报 63 244103Google Scholar

    Huang S J, Gu T T, Miao Z, He C, Wang T Y 2014 Acta Phys. Sin. 63 244103Google Scholar

    [14]

    Ke X Z, Zhao J 2019 Optik 183 302Google Scholar

    [15]

    Liu Y X, Zhang K N, Chen Z Y, Pu J X 2019 Optik 181 571Google Scholar

    [16]

    Nong L Y, Ren J J, Guan Z W, Wang C F, Ye H P, Liu J M, Li Y, Fan D Y, Chen S Q 2022 Opt. Express 30 27482Google Scholar

    [17]

    Smith D C 1977 P. IEEE 65 1679Google Scholar

    [18]

    Ji X L, Eyyuboğlu H T, Ji G M, Jia X H 2013 Opt. Express 21 2154Google Scholar

    [19]

    Zhao L, Wang J, Guo M J, Xu X, Qian X M, Zhu W Y, Li J 2021 Opt. Laser Technol. 139 106982Google Scholar

    [20]

    Maxim A M, Evgeny V D, Rafael A V 2010 Opt. Lett. 35 670Google Scholar

    [21]

    Qiu D, Tian B Y, Ting H, Zhong Z Q, Zhang B 2021 Appl. Opt. 60 8458Google Scholar

    [22]

    钟哲强, 张翔, 张彬, 袁孝 2023 物理学报 72 064204Google Scholar

    Zhong Z Q, Zhang X, Zhang B, Yuan X 2023 Acta Phys. Sin. 72 064204Google Scholar

    [23]

    Vaity P, Singh R P 2011 Opt. Lett. 36 2994Google Scholar

    [24]

    Gebhardt F G 1990 Proc. SPIE 122 2Google Scholar

    [25]

    Li Y K, Chen D Q, Xu X S, Zhang X W 1993 Atmospheric Propagation and Remote Sensing II 1968 424Google Scholar

    [26]

    Strohbehn J W 1978 Laser Beam Propagation in the Atmosphere (Springer) p224

    [27]

    Fleck J A, Morris J R 1976 Appl. Phys. 10 2

    [28]

    Litvin I A 2012 J. Opt. Soc. Am. A 29 901Google Scholar

    [29]

    Liang G, Wang Y Q, Guo Q, Zhang H C 2018 Opt. Express 26 8084Google Scholar

    [30]

    Indebetouw G 1993 J. Mod. Optic. 40 73

    [31]

    Soskin M S, Vasnetsov M V 2001 Singular Optics (Netherlands: Progress in Optics) 42 219

  • 图 1  单模子光束及双模涡旋光束的光强(a1—a3)和相位(b1—b3)分布

    Fig. 1.  Intensity (a1–a3) and phase (b1–b3) of single-mode subbeams and a dual-mode vortex beams.

    图 2  l1 = 1, l2 = 3时, 横截面的光强和能流分布 (a) 源平面; (b) 自由空间; (c) 在大气中

    Fig. 2.  Beam intensity and energy flow distributions at cross section at l1 = 1 and l2 = 3: (a) Source plane; (b) free space; (c) in the atmosphere.

    图 3  双模涡旋光束的OAM随θ变化 (a) l1 = 1, l2 = 3时, 不同风速; (b) v = 3 m/s时, 不同模式

    Fig. 3.  OAM of dual-mode vortex beams versus θ: (a) Different wind speeds at l1 = 1 and l2 = 3; (b) different modes at v = 3 m/s.

    图 4  l1 = 1, l2 = 3, v = 3 m/s 时, OAM密度(a)—(d)和能流分布(e)—(h)

    Fig. 4.  OAM density (a)–(d) and energy flow distribution (e)–(h) at l1 = 1, l2 = 3 and v = 3 m/s.

    图 5  拓扑荷相差为2的双模涡旋光束的OAM随θ变化. 实线为大气(v = 3 m/s), 虚线为自由空间

    Fig. 5.  OAM of the dual-mode vortex beams with a topological charge difference of 2 versus θ. Solid line is in the atmosphere (v = 3 m/s), dotted line is in free space.

    图 6  双模涡旋光束的OAM随风速的变化. 实线为大气, 虚线为自由空间 (a) θ = 20°; (b) θ = 150°

    Fig. 6.  OAM of dual-mode vortex beams as a function of wind speed. Solid line is in the atmosphere, dotted line is in free space: (a) θ = 20°; (b) θ = 150° .

    图 7  v = 3 m/s时, 不同双模涡旋光束的OAM随θ变化

    Fig. 7.  OAM of different dual-mode vortex beams versus θ at v = 3 m/s.

    图 8  l1 = 1, l2 = –1时, 线刃型位错奇点在自由空间和大气中的演化

    Fig. 8.  Evolution of linear edge dislocation singularity in free space and in the atmosphere at l1 = 1 and l2 = –1.

    图 9  l1 = 1, l2 = –1时, 风向不同的双模涡旋光束横向能流图

    Fig. 9.  Transverse energy flow of dual-mode vortex beams under different wind direction, l1 = 1 and l2 = –1.

  • [1]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation Through Random Media (2nd. Ed.) (Bellingham: SPIE Press) pp478–479

    [2]

    Sprangle P, Hafizi B, Ting A, Fischer R 2015 Appl. Opt. 54 F201Google Scholar

    [3]

    Jabczyński J K, Gontar P 2021 Def. Technol. 17 1160Google Scholar

    [4]

    Rubenchik A M, Fedoruk M P, Turitsyn S K 2009 Phys. Rev. Lett. 102 233902Google Scholar

    [5]

    Liu X Y, Qian X M, He R, Liu D D, Cui C L, Fan C Y, Yuan H 2021 Star. Atmosphere 12 1315Google Scholar

    [6]

    Allen L, Beijersbergen M W, Spreeuw R, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [7]

    Simpson N B, Dholakia K, Allen L, Padgett M J 1997 Opt. Lett. 22 52Google Scholar

    [8]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Alan E 2012 Nat. Photon. 6 488Google Scholar

    [9]

    Liu Y D, Gao C Q, Gao M W, Qi X Q, Weber H 2008 Opt. Commun. 281 3636Google Scholar

    [10]

    Gao C Q, Qi X Q, Liu Y D, Weber H 2010 Opt. Express 18 72Google Scholar

    [11]

    Lin J, Yuan X C, Tao S H, Burge R E 2005 Opt. Lett. 30 3266Google Scholar

    [12]

    Soskin M S, Gorshkov V N, Vasnetsov M V, Malos J T, Heckenberg N R 1997 Phys. Rev. A 56 4064Google Scholar

    [13]

    黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云 2014 物理学报 63 244103Google Scholar

    Huang S J, Gu T T, Miao Z, He C, Wang T Y 2014 Acta Phys. Sin. 63 244103Google Scholar

    [14]

    Ke X Z, Zhao J 2019 Optik 183 302Google Scholar

    [15]

    Liu Y X, Zhang K N, Chen Z Y, Pu J X 2019 Optik 181 571Google Scholar

    [16]

    Nong L Y, Ren J J, Guan Z W, Wang C F, Ye H P, Liu J M, Li Y, Fan D Y, Chen S Q 2022 Opt. Express 30 27482Google Scholar

    [17]

    Smith D C 1977 P. IEEE 65 1679Google Scholar

    [18]

    Ji X L, Eyyuboğlu H T, Ji G M, Jia X H 2013 Opt. Express 21 2154Google Scholar

    [19]

    Zhao L, Wang J, Guo M J, Xu X, Qian X M, Zhu W Y, Li J 2021 Opt. Laser Technol. 139 106982Google Scholar

    [20]

    Maxim A M, Evgeny V D, Rafael A V 2010 Opt. Lett. 35 670Google Scholar

    [21]

    Qiu D, Tian B Y, Ting H, Zhong Z Q, Zhang B 2021 Appl. Opt. 60 8458Google Scholar

    [22]

    钟哲强, 张翔, 张彬, 袁孝 2023 物理学报 72 064204Google Scholar

    Zhong Z Q, Zhang X, Zhang B, Yuan X 2023 Acta Phys. Sin. 72 064204Google Scholar

    [23]

    Vaity P, Singh R P 2011 Opt. Lett. 36 2994Google Scholar

    [24]

    Gebhardt F G 1990 Proc. SPIE 122 2Google Scholar

    [25]

    Li Y K, Chen D Q, Xu X S, Zhang X W 1993 Atmospheric Propagation and Remote Sensing II 1968 424Google Scholar

    [26]

    Strohbehn J W 1978 Laser Beam Propagation in the Atmosphere (Springer) p224

    [27]

    Fleck J A, Morris J R 1976 Appl. Phys. 10 2

    [28]

    Litvin I A 2012 J. Opt. Soc. Am. A 29 901Google Scholar

    [29]

    Liang G, Wang Y Q, Guo Q, Zhang H C 2018 Opt. Express 26 8084Google Scholar

    [30]

    Indebetouw G 1993 J. Mod. Optic. 40 73

    [31]

    Soskin M S, Vasnetsov M V 2001 Singular Optics (Netherlands: Progress in Optics) 42 219

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究. 物理学报, 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] 张卓, 张景风, 孔令军. 基于光束偏移器的光的轨道角动量分束器. 物理学报, 2024, 73(7): 074201. doi: 10.7498/aps.73.20231874
    [3] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [4] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [5] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [6] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [7] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [8] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [9] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [10] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [11] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [12] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [13] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [14] 齐晓庆, 高春清, 刘义东. 利用相位型衍射光栅生成能量按比例分布的多个螺旋光束的研究. 物理学报, 2010, 59(1): 264-270. doi: 10.7498/aps.59.264
    [15] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [16] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [17] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [18] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [19] 董一鸣, 徐云飞, 张 璋, 林 强. 复杂像散椭圆光束的轨道角动量的实验研究. 物理学报, 2006, 55(11): 5755-5759. doi: 10.7498/aps.55.5755
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  3031
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 修回日期:  2023-05-21
  • 上网日期:  2023-06-06
  • 刊出日期:  2023-08-20

/

返回文章
返回