-
The full vector properties of the optical parameters of cylindrical vector vortex beam (CVVB) propagating in free space, such as the momentum (P), spin angular momentum (SAM), transverse-type spin angular momentum (t-SAM), longitudinal-type spin angular momentum (l-SAM), and light field are characterized by using spin-momentum relation in this work. The research results show that P has x-, y-, and z- component, SAM has x- and y- components, but no z-component; t-SAM and l-SAM both have components which are parallel and perpendicular to the optical axis when the topological charge m is not 0; t-SAM has a longitudinal component which is related to the helical trajectory of photons; l-SAM has a transverse component in free space. Except for the angularly polarized vortex beam (APVB), which has no longitudinal field when the topological charge m is 0, both radially polarized vortex beam (RPVB) and APVB have longitudinal fields in free space. The vectorial characteristic of the angular momentum of CVVB in free space can provide a theoretical basis for analyzing the transmission of structured beams in different media.
-
Keywords:
- cylindrical vector vortex beam /
- kinetic momentum /
- spin angular momentum /
- orbital angular momentum
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
Google Scholar
[2] Allen L, Padgett M J, Babiker M 1999 Prog. Opt. 39 291
Google Scholar
[3] Fang X Y, Yang H C, Yao W Z, Wang T X, Zhang Y, Gu M, Xiao M 2021 Adv. Photon. 3 015001
Google Scholar
[4] Bekshaev A, Bliokh K Y, Soskin M 2011 J. Opt. 13 053001
Google Scholar
[5] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light Sci. Appl. 8 90
Google Scholar
[6] Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nat. Photonics 2 748
Google Scholar
[7] Bliokh K Y 2009 J. Opt. A: Pure Appl. Opt. 11 094009
Google Scholar
[8] Lin J, Yuan X C, Tao S H, Burge R E 2007 Appl. Opt. 46 4680
Google Scholar
[9] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488
Google Scholar
[10] Lei T, Zhang M, Li Y R, Jia P, Liu G N, Xu X G, Li Z H, Min C J, Lin J, Yu C Y, Niu H B, Yuan X C 2015 Light Sci. Appl. 4 e257
Google Scholar
[11] Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448
Google Scholar
[12] Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354
Google Scholar
[13] Labroille G, Barré N, Pinel O, Denolle B, Lengle K, Garcia L, Jaffres L, Jian P, Morizur J F 2017 Opt. Fiber Technol. 35 93
Google Scholar
[14] Yang Y, Ren Y X, Chen M, Arita Y, Rosales-Guzman C 2021 Adv. Photon. 3 034001
Google Scholar
[15] Li Y, Zhou L M, Zhao N 2021 Opt. Lett. 46 106
Google Scholar
[16] Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, Segev M 2018 Science 361 1101
Google Scholar
[17] Solntsev A S, Agarwal G S, Kivshar Y 2021 Nat. Photonics 15 327
Google Scholar
[18] Chong A, Wan C, Chen J, Zhan Q 2020 Nat. Photonics 14 350
Google Scholar
[19] Shi P, Du L P, Yuan X C 2021 Nanophotonics 10 3927
Google Scholar
[20] Bliokh K Y, Bekshaev A Y, Nori F 2014 Nat. Commun. 5 3300
Google Scholar
[21] 付泽宇 2018 硕士学位论文(哈尔滨: 哈尔滨工业大学)
Fu Z Y 2018 M. S. Thesis (Harbin: Harbin Institute of Technology
[22] Bliokh K Y, Smirnova D, Nori F 2015 Science 348 1448
Google Scholar
[23] Bliokh K Y, Rodríguez-Fortuño F J, Bekshaev A Y, Kivshar Y S, Nori F 2018 Opt. Lett. 43 963
Google Scholar
[24] Shi P, Lei X, Zhang Q, Li H, Du L P, Yuan X C 2022 Phys. Rev. Lett. 128 213904
Google Scholar
[25] Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X. 5 011039
Google Scholar
[26] Aiello A, Banzer P 2016 J. Opt. 18 085605
Google Scholar
[27] Shi P, Li H, Du L P, Yuan X C 2022 ACS Photonics 10 2332
Google Scholar
[28] Shi P, Du L P, Yang A, Yin X, Lei X, Yuan X C 2023 Commun. Phys. 6 283
Google Scholar
[29] Yin X J, Shi P, Du L P, Yuan X C 2020 Appl. Phys. Lett. 116 241107
Google Scholar
[30] Yu P P, Zhao Q, Hu X Y, Li Y M, Gong L 2018 Opt. Lett. 43 5677
Google Scholar
[31] Li C C, Shi P, Du L P, Yuan X C 2020 Nanoscale 12 13674
Google Scholar
[32] Alexeyev C N, Alexeyev A N, Lapin B P, Milione G, Yavorsky M A 2013 Phys. Rev. A. 88 63814
Google Scholar
[33] Volyar A V, Zhilaıtis V Z, Shvedov V G 1998 Tech. Phys. Lett. 24 826
Google Scholar
[34] Johnson S D, Ma Z, Padgett M J, Ramachandran S 2019 OSA Continuum. 2 2975
Google Scholar
[35] Chakravarthy T P, Viswanathan N K 2019 OSA Continuum. 2 1576
Google Scholar
[36] Bliokh K Y, Alonso M A, Ostrovskaya E A, Aiello A 2010 Phys. Rev. A 82 63825
Google Scholar
[37] Bliokh K Y, Ostrovskaya E A, Alonso M A, Rodríguez-Herrera O G, Lara D, Dainty C 2011 Opt. Express 19 26132
Google Scholar
[38] Yin X J, Li Y, Jin G L, Wang J, Liu J H, Li J H 2024 J. Opt. Soc. Am. A 41 2231
Google Scholar
[39] Rodríguez-Fortuño F J, Marino G, Ginzburg P, O´Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328
Google Scholar
[40] Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67
Google Scholar
[41] Rodríguez-Fortuño F J, Barber-Sanz I, Puerto D, Griol A, Martinez A 2014 ACS Photonics 1 762
Google Scholar
[42] 赵春刚 2022 硕士学位论文(太原: 太原科技大学)
Zhao C G 2022 M. S. Thesis (Taiyuan: Taiyuan University of Science and Technology
-
图 1 拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处动量(P)的x, y, z分量, 带有不同拓扑荷m的RPVB的动量分量通过除以相应拓扑荷m下总光强的最大值进行归一化
Fig. 1. The x, y, z components of kinetic momentum (P) of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the momentum components of RPVB with different topological charges are normalized by dividing by the maximum value of the total light intensity of the corresponding topological charge m.
图 2 拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处总SAM的x, y, z分量, 带有不同拓扑荷m的RPVB的总SAM分量通过除以相应拓扑荷m下总光强的最大值进行归一化
Fig. 2. The x, y, z components of the total SAM of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the total SAM component of RPVB with different topological charges is normalized by dividing by the maximum valve of the total light intensity of the corresponding topological charge m.
图 3 拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处横向自旋(t-SAM)的x, y, z分量, 带有不同拓扑荷m的RPVB的t-SAM的分量通过除以相应拓扑荷m下总光强的最大值进行归一化
Fig. 3. The x, y, z components of the transverse-type spin (t-SAM) of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the components of the t-SAM of RPVB with different topological charges are normalized by dividing by the maximum value of the total light intensity of the corresponding topological charge m.
图 4 拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处纵向自旋(l-SAM)的x, y, z分量, 带有不同拓扑荷m的RPVB的l-SAM的分量通过除以相应拓扑荷m下总光强的最大值进行归一化
Fig. 4. The x, y, z components of the longitudinal-type spin (l-SAM) of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the components of the l-SAM of RPVB with different topological charges are normalized by dividing by the maximum value of the total light intensity of the corresponding topological charge m.
图 5 (a)拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处的横向场和纵向场光强, 带有不同拓扑荷m的RPVB的横向场和纵向场光强通过除以相应拓扑荷m下I1 + I2的最大值进行归一化; (b)拓扑荷m = 0, ±1, ±2时APVB在自由空间距离源平面z处的纵向场光强, 带有不同拓扑荷m的APVB的纵向场光强通过除以相应拓扑荷m下I1 + I2的最大值进行归一化
Fig. 5. (a) The transverse field and longitudinal field intensity of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2. The transverse and longitudinal field light intensities of RPVB with different topological charges are normalized by dividing by the maximum value of I1 + I2 of the corresponding topological charge m; (b) the longitudinal field intensity of APVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the longitudinal field light intensity of APVB with different topological charges are normalized by dividing by the maximum value of I1 + I2 of the corresponding topological charge m.
图 6 拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处的OAM, 带有不同拓扑荷m的RPVB的OAM通过除以相应拓扑荷m下I1 + I2的最大值进行归一化
Fig. 6. The OAM of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the OAM of RPVB with different topological charges is normalized by dividing by the maximum value of I1 + I2 of the corresponding topological charge m.
-
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
Google Scholar
[2] Allen L, Padgett M J, Babiker M 1999 Prog. Opt. 39 291
Google Scholar
[3] Fang X Y, Yang H C, Yao W Z, Wang T X, Zhang Y, Gu M, Xiao M 2021 Adv. Photon. 3 015001
Google Scholar
[4] Bekshaev A, Bliokh K Y, Soskin M 2011 J. Opt. 13 053001
Google Scholar
[5] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light Sci. Appl. 8 90
Google Scholar
[6] Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nat. Photonics 2 748
Google Scholar
[7] Bliokh K Y 2009 J. Opt. A: Pure Appl. Opt. 11 094009
Google Scholar
[8] Lin J, Yuan X C, Tao S H, Burge R E 2007 Appl. Opt. 46 4680
Google Scholar
[9] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488
Google Scholar
[10] Lei T, Zhang M, Li Y R, Jia P, Liu G N, Xu X G, Li Z H, Min C J, Lin J, Yu C Y, Niu H B, Yuan X C 2015 Light Sci. Appl. 4 e257
Google Scholar
[11] Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448
Google Scholar
[12] Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354
Google Scholar
[13] Labroille G, Barré N, Pinel O, Denolle B, Lengle K, Garcia L, Jaffres L, Jian P, Morizur J F 2017 Opt. Fiber Technol. 35 93
Google Scholar
[14] Yang Y, Ren Y X, Chen M, Arita Y, Rosales-Guzman C 2021 Adv. Photon. 3 034001
Google Scholar
[15] Li Y, Zhou L M, Zhao N 2021 Opt. Lett. 46 106
Google Scholar
[16] Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, Segev M 2018 Science 361 1101
Google Scholar
[17] Solntsev A S, Agarwal G S, Kivshar Y 2021 Nat. Photonics 15 327
Google Scholar
[18] Chong A, Wan C, Chen J, Zhan Q 2020 Nat. Photonics 14 350
Google Scholar
[19] Shi P, Du L P, Yuan X C 2021 Nanophotonics 10 3927
Google Scholar
[20] Bliokh K Y, Bekshaev A Y, Nori F 2014 Nat. Commun. 5 3300
Google Scholar
[21] 付泽宇 2018 硕士学位论文(哈尔滨: 哈尔滨工业大学)
Fu Z Y 2018 M. S. Thesis (Harbin: Harbin Institute of Technology
[22] Bliokh K Y, Smirnova D, Nori F 2015 Science 348 1448
Google Scholar
[23] Bliokh K Y, Rodríguez-Fortuño F J, Bekshaev A Y, Kivshar Y S, Nori F 2018 Opt. Lett. 43 963
Google Scholar
[24] Shi P, Lei X, Zhang Q, Li H, Du L P, Yuan X C 2022 Phys. Rev. Lett. 128 213904
Google Scholar
[25] Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X. 5 011039
Google Scholar
[26] Aiello A, Banzer P 2016 J. Opt. 18 085605
Google Scholar
[27] Shi P, Li H, Du L P, Yuan X C 2022 ACS Photonics 10 2332
Google Scholar
[28] Shi P, Du L P, Yang A, Yin X, Lei X, Yuan X C 2023 Commun. Phys. 6 283
Google Scholar
[29] Yin X J, Shi P, Du L P, Yuan X C 2020 Appl. Phys. Lett. 116 241107
Google Scholar
[30] Yu P P, Zhao Q, Hu X Y, Li Y M, Gong L 2018 Opt. Lett. 43 5677
Google Scholar
[31] Li C C, Shi P, Du L P, Yuan X C 2020 Nanoscale 12 13674
Google Scholar
[32] Alexeyev C N, Alexeyev A N, Lapin B P, Milione G, Yavorsky M A 2013 Phys. Rev. A. 88 63814
Google Scholar
[33] Volyar A V, Zhilaıtis V Z, Shvedov V G 1998 Tech. Phys. Lett. 24 826
Google Scholar
[34] Johnson S D, Ma Z, Padgett M J, Ramachandran S 2019 OSA Continuum. 2 2975
Google Scholar
[35] Chakravarthy T P, Viswanathan N K 2019 OSA Continuum. 2 1576
Google Scholar
[36] Bliokh K Y, Alonso M A, Ostrovskaya E A, Aiello A 2010 Phys. Rev. A 82 63825
Google Scholar
[37] Bliokh K Y, Ostrovskaya E A, Alonso M A, Rodríguez-Herrera O G, Lara D, Dainty C 2011 Opt. Express 19 26132
Google Scholar
[38] Yin X J, Li Y, Jin G L, Wang J, Liu J H, Li J H 2024 J. Opt. Soc. Am. A 41 2231
Google Scholar
[39] Rodríguez-Fortuño F J, Marino G, Ginzburg P, O´Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328
Google Scholar
[40] Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67
Google Scholar
[41] Rodríguez-Fortuño F J, Barber-Sanz I, Puerto D, Griol A, Martinez A 2014 ACS Photonics 1 762
Google Scholar
[42] 赵春刚 2022 硕士学位论文(太原: 太原科技大学)
Zhao C G 2022 M. S. Thesis (Taiyuan: Taiyuan University of Science and Technology
计量
- 文章访问数: 629
- PDF下载量: 18
- 被引次数: 0