搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柱矢量涡旋光束在自由空间中传输时角动量的全矢量特性

高雨洁 李晋红 王静 刘晋宏 尹晓金

引用本文:
Citation:

柱矢量涡旋光束在自由空间中传输时角动量的全矢量特性

高雨洁, 李晋红, 王静, 刘晋宏, 尹晓金
cstr: 32037.14.aps.74.20241344

Full vector properties of angular momentum of cylindrical vector vortex beam propagating in free space

GAO Yujie, LI Jinhong, WANG Jing, LIU Jinhong, YIN Xiaojin
cstr: 32037.14.aps.74.20241344
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用自旋-动量关系表征了柱矢量涡旋光束在自由空间中传输时的动量(P)、自旋角动量(SAM)、横向自旋角动量(t-SAM)、纵向自旋角动量(l-SAM)、轨道角动量以及矢量光场分布. 研究结果表明: P存在与光轴平行和垂直的分量, t-SAM, l-SAM和光场在拓扑荷m不为零时均存在与光轴平行和垂直的分量, 而SAM只存在与光轴垂直的分量, 不存在与光轴平行的分量. 使用自旋-动量关系, 对在自由空间中传输的柱矢量涡旋光束的光学参量进行全矢量的表征, 可以为分析结构光束在不同介质中传输时的角动量特性提供一定的理论基础.
    The full vector properties of the optical parameters of cylindrical vector vortex beam (CVVB) propagating in free space, such as the momentum (P), spin angular momentum (SAM), transverse-type spin angular momentum (t-SAM), longitudinal-type spin angular momentum (l-SAM), and light field are characterized by using spin-momentum relation in this work. The research results show that P has x-, y-, and z- component, SAM has x- and y- components, but no z-component; t-SAM and l-SAM both have components which are parallel and perpendicular to the optical axis when the topological charge m is not 0; t-SAM has a longitudinal component which is related to the helical trajectory of photons; l-SAM has a transverse component in free space. Except for the angularly polarized vortex beam (APVB), which has no longitudinal field when the topological charge m is 0, both radially polarized vortex beam (RPVB) and APVB have longitudinal fields in free space. The vectorial characteristic of the angular momentum of CVVB in free space can provide a theoretical basis for analyzing the transmission of structured beams in different media.
      通信作者: 尹晓金, 2021013@tyust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62305238, 12104332)和山西省基础研究计划(批准号: 202203021211192)资助的课题.
      Corresponding author: YIN Xiaojin, 2021013@tyust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62305238, 12104332) and the Fundamental Research Program of Shanxi Province, China (Grant No. 202203021211192).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Allen L, Padgett M J, Babiker M 1999 Prog. Opt. 39 291Google Scholar

    [3]

    Fang X Y, Yang H C, Yao W Z, Wang T X, Zhang Y, Gu M, Xiao M 2021 Adv. Photon. 3 015001Google Scholar

    [4]

    Bekshaev A, Bliokh K Y, Soskin M 2011 J. Opt. 13 053001Google Scholar

    [5]

    Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light Sci. Appl. 8 90Google Scholar

    [6]

    Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nat. Photonics 2 748Google Scholar

    [7]

    Bliokh K Y 2009 J. Opt. A: Pure Appl. Opt. 11 094009Google Scholar

    [8]

    Lin J, Yuan X C, Tao S H, Burge R E 2007 Appl. Opt. 46 4680Google Scholar

    [9]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [10]

    Lei T, Zhang M, Li Y R, Jia P, Liu G N, Xu X G, Li Z H, Min C J, Lin J, Yu C Y, Niu H B, Yuan X C 2015 Light Sci. Appl. 4 e257Google Scholar

    [11]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [12]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [13]

    Labroille G, Barré N, Pinel O, Denolle B, Lengle K, Garcia L, Jaffres L, Jian P, Morizur J F 2017 Opt. Fiber Technol. 35 93Google Scholar

    [14]

    Yang Y, Ren Y X, Chen M, Arita Y, Rosales-Guzman C 2021 Adv. Photon. 3 034001Google Scholar

    [15]

    Li Y, Zhou L M, Zhao N 2021 Opt. Lett. 46 106Google Scholar

    [16]

    Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, Segev M 2018 Science 361 1101Google Scholar

    [17]

    Solntsev A S, Agarwal G S, Kivshar Y 2021 Nat. Photonics 15 327Google Scholar

    [18]

    Chong A, Wan C, Chen J, Zhan Q 2020 Nat. Photonics 14 350Google Scholar

    [19]

    Shi P, Du L P, Yuan X C 2021 Nanophotonics 10 3927Google Scholar

    [20]

    Bliokh K Y, Bekshaev A Y, Nori F 2014 Nat. Commun. 5 3300Google Scholar

    [21]

    付泽宇 2018 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Fu Z Y 2018 M. S. Thesis (Harbin: Harbin Institute of Technology

    [22]

    Bliokh K Y, Smirnova D, Nori F 2015 Science 348 1448Google Scholar

    [23]

    Bliokh K Y, Rodríguez-Fortuño F J, Bekshaev A Y, Kivshar Y S, Nori F 2018 Opt. Lett. 43 963Google Scholar

    [24]

    Shi P, Lei X, Zhang Q, Li H, Du L P, Yuan X C 2022 Phys. Rev. Lett. 128 213904Google Scholar

    [25]

    Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X. 5 011039Google Scholar

    [26]

    Aiello A, Banzer P 2016 J. Opt. 18 085605Google Scholar

    [27]

    Shi P, Li H, Du L P, Yuan X C 2022 ACS Photonics 10 2332Google Scholar

    [28]

    Shi P, Du L P, Yang A, Yin X, Lei X, Yuan X C 2023 Commun. Phys. 6 283Google Scholar

    [29]

    Yin X J, Shi P, Du L P, Yuan X C 2020 Appl. Phys. Lett. 116 241107Google Scholar

    [30]

    Yu P P, Zhao Q, Hu X Y, Li Y M, Gong L 2018 Opt. Lett. 43 5677Google Scholar

    [31]

    Li C C, Shi P, Du L P, Yuan X C 2020 Nanoscale 12 13674Google Scholar

    [32]

    Alexeyev C N, Alexeyev A N, Lapin B P, Milione G, Yavorsky M A 2013 Phys. Rev. A. 88 63814Google Scholar

    [33]

    Volyar A V, Zhilaıtis V Z, Shvedov V G 1998 Tech. Phys. Lett. 24 826Google Scholar

    [34]

    Johnson S D, Ma Z, Padgett M J, Ramachandran S 2019 OSA Continuum. 2 2975Google Scholar

    [35]

    Chakravarthy T P, Viswanathan N K 2019 OSA Continuum. 2 1576Google Scholar

    [36]

    Bliokh K Y, Alonso M A, Ostrovskaya E A, Aiello A 2010 Phys. Rev. A 82 63825Google Scholar

    [37]

    Bliokh K Y, Ostrovskaya E A, Alonso M A, Rodríguez-Herrera O G, Lara D, Dainty C 2011 Opt. Express 19 26132Google Scholar

    [38]

    Yin X J, Li Y, Jin G L, Wang J, Liu J H, Li J H 2024 J. Opt. Soc. Am. A 41 2231Google Scholar

    [39]

    Rodríguez-Fortuño F J, Marino G, Ginzburg P, O´Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328Google Scholar

    [40]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67Google Scholar

    [41]

    Rodríguez-Fortuño F J, Barber-Sanz I, Puerto D, Griol A, Martinez A 2014 ACS Photonics 1 762Google Scholar

    [42]

    赵春刚 2022 硕士学位论文(太原: 太原科技大学)

    Zhao C G 2022 M. S. Thesis (Taiyuan: Taiyuan University of Science and Technology

  • 图 1  拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处动量(P)的x, y, z分量, 带有不同拓扑荷m的RPVB的动量分量通过除以相应拓扑荷m下总光强的最大值进行归一化

    Fig. 1.  The x, y, z components of kinetic momentum (P) of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the momentum components of RPVB with different topological charges are normalized by dividing by the maximum value of the total light intensity of the corresponding topological charge m.

    图 2  拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处总SAM的x, y, z分量, 带有不同拓扑荷m的RPVB的总SAM分量通过除以相应拓扑荷m下总光强的最大值进行归一化

    Fig. 2.  The x, y, z components of the total SAM of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the total SAM component of RPVB with different topological charges is normalized by dividing by the maximum valve of the total light intensity of the corresponding topological charge m.

    图 3  拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处横向自旋(t-SAM)的x, y, z分量, 带有不同拓扑荷m的RPVB的t-SAM的分量通过除以相应拓扑荷m下总光强的最大值进行归一化

    Fig. 3.  The x, y, z components of the transverse-type spin (t-SAM) of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the components of the t-SAM of RPVB with different topological charges are normalized by dividing by the maximum value of the total light intensity of the corresponding topological charge m.

    图 4  拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处纵向自旋(l-SAM)的x, y, z分量, 带有不同拓扑荷m的RPVB的l-SAM的分量通过除以相应拓扑荷m下总光强的最大值进行归一化

    Fig. 4.  The x, y, z components of the longitudinal-type spin (l-SAM) of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the components of the l-SAM of RPVB with different topological charges are normalized by dividing by the maximum value of the total light intensity of the corresponding topological charge m.

    图 5  (a)拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处的横向场和纵向场光强, 带有不同拓扑荷m的RPVB的横向场和纵向场光强通过除以相应拓扑荷mI1 + I2的最大值进行归一化; (b)拓扑荷m = 0, ±1, ±2时APVB在自由空间距离源平面z处的纵向场光强, 带有不同拓扑荷m的APVB的纵向场光强通过除以相应拓扑荷mI1 + I2的最大值进行归一化

    Fig. 5.  (a) The transverse field and longitudinal field intensity of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2. The transverse and longitudinal field light intensities of RPVB with different topological charges are normalized by dividing by the maximum value of I1 + I2 of the corresponding topological charge m; (b) the longitudinal field intensity of APVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the longitudinal field light intensity of APVB with different topological charges are normalized by dividing by the maximum value of I1 + I2 of the corresponding topological charge m.

    图 6  拓扑荷m = 0, ±1, ±2时RPVB在自由空间距离源平面z处的OAM, 带有不同拓扑荷m的RPVB的OAM通过除以相应拓扑荷mI1 + I2的最大值进行归一化

    Fig. 6.  The OAM of RPVB in free space from the source plane z when the topological charge m = 0, ±1, ±2, the OAM of RPVB with different topological charges is normalized by dividing by the maximum value of I1 + I2 of the corresponding topological charge m.

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Allen L, Padgett M J, Babiker M 1999 Prog. Opt. 39 291Google Scholar

    [3]

    Fang X Y, Yang H C, Yao W Z, Wang T X, Zhang Y, Gu M, Xiao M 2021 Adv. Photon. 3 015001Google Scholar

    [4]

    Bekshaev A, Bliokh K Y, Soskin M 2011 J. Opt. 13 053001Google Scholar

    [5]

    Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light Sci. Appl. 8 90Google Scholar

    [6]

    Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nat. Photonics 2 748Google Scholar

    [7]

    Bliokh K Y 2009 J. Opt. A: Pure Appl. Opt. 11 094009Google Scholar

    [8]

    Lin J, Yuan X C, Tao S H, Burge R E 2007 Appl. Opt. 46 4680Google Scholar

    [9]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [10]

    Lei T, Zhang M, Li Y R, Jia P, Liu G N, Xu X G, Li Z H, Min C J, Lin J, Yu C Y, Niu H B, Yuan X C 2015 Light Sci. Appl. 4 e257Google Scholar

    [11]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [12]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [13]

    Labroille G, Barré N, Pinel O, Denolle B, Lengle K, Garcia L, Jaffres L, Jian P, Morizur J F 2017 Opt. Fiber Technol. 35 93Google Scholar

    [14]

    Yang Y, Ren Y X, Chen M, Arita Y, Rosales-Guzman C 2021 Adv. Photon. 3 034001Google Scholar

    [15]

    Li Y, Zhou L M, Zhao N 2021 Opt. Lett. 46 106Google Scholar

    [16]

    Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, Segev M 2018 Science 361 1101Google Scholar

    [17]

    Solntsev A S, Agarwal G S, Kivshar Y 2021 Nat. Photonics 15 327Google Scholar

    [18]

    Chong A, Wan C, Chen J, Zhan Q 2020 Nat. Photonics 14 350Google Scholar

    [19]

    Shi P, Du L P, Yuan X C 2021 Nanophotonics 10 3927Google Scholar

    [20]

    Bliokh K Y, Bekshaev A Y, Nori F 2014 Nat. Commun. 5 3300Google Scholar

    [21]

    付泽宇 2018 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Fu Z Y 2018 M. S. Thesis (Harbin: Harbin Institute of Technology

    [22]

    Bliokh K Y, Smirnova D, Nori F 2015 Science 348 1448Google Scholar

    [23]

    Bliokh K Y, Rodríguez-Fortuño F J, Bekshaev A Y, Kivshar Y S, Nori F 2018 Opt. Lett. 43 963Google Scholar

    [24]

    Shi P, Lei X, Zhang Q, Li H, Du L P, Yuan X C 2022 Phys. Rev. Lett. 128 213904Google Scholar

    [25]

    Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X. 5 011039Google Scholar

    [26]

    Aiello A, Banzer P 2016 J. Opt. 18 085605Google Scholar

    [27]

    Shi P, Li H, Du L P, Yuan X C 2022 ACS Photonics 10 2332Google Scholar

    [28]

    Shi P, Du L P, Yang A, Yin X, Lei X, Yuan X C 2023 Commun. Phys. 6 283Google Scholar

    [29]

    Yin X J, Shi P, Du L P, Yuan X C 2020 Appl. Phys. Lett. 116 241107Google Scholar

    [30]

    Yu P P, Zhao Q, Hu X Y, Li Y M, Gong L 2018 Opt. Lett. 43 5677Google Scholar

    [31]

    Li C C, Shi P, Du L P, Yuan X C 2020 Nanoscale 12 13674Google Scholar

    [32]

    Alexeyev C N, Alexeyev A N, Lapin B P, Milione G, Yavorsky M A 2013 Phys. Rev. A. 88 63814Google Scholar

    [33]

    Volyar A V, Zhilaıtis V Z, Shvedov V G 1998 Tech. Phys. Lett. 24 826Google Scholar

    [34]

    Johnson S D, Ma Z, Padgett M J, Ramachandran S 2019 OSA Continuum. 2 2975Google Scholar

    [35]

    Chakravarthy T P, Viswanathan N K 2019 OSA Continuum. 2 1576Google Scholar

    [36]

    Bliokh K Y, Alonso M A, Ostrovskaya E A, Aiello A 2010 Phys. Rev. A 82 63825Google Scholar

    [37]

    Bliokh K Y, Ostrovskaya E A, Alonso M A, Rodríguez-Herrera O G, Lara D, Dainty C 2011 Opt. Express 19 26132Google Scholar

    [38]

    Yin X J, Li Y, Jin G L, Wang J, Liu J H, Li J H 2024 J. Opt. Soc. Am. A 41 2231Google Scholar

    [39]

    Rodríguez-Fortuño F J, Marino G, Ginzburg P, O´Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328Google Scholar

    [40]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67Google Scholar

    [41]

    Rodríguez-Fortuño F J, Barber-Sanz I, Puerto D, Griol A, Martinez A 2014 ACS Photonics 1 762Google Scholar

    [42]

    赵春刚 2022 硕士学位论文(太原: 太原科技大学)

    Zhao C G 2022 M. S. Thesis (Taiyuan: Taiyuan University of Science and Technology

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究. 物理学报, 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] 张卓, 张景风, 孔令军. 基于光束偏移器的光的轨道角动量分束器. 物理学报, 2024, 73(7): 074201. doi: 10.7498/aps.73.20231874
    [3] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [4] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [5] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [6] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [7] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [8] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [9] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [10] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [11] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [12] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [13] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [14] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [15] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [16] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [17] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [18] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [19] 董一鸣, 徐云飞, 张 璋, 林 强. 复杂像散椭圆光束的轨道角动量的实验研究. 物理学报, 2006, 55(11): 5755-5759. doi: 10.7498/aps.55.5755
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  629
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-24
  • 修回日期:  2024-12-30
  • 上网日期:  2025-01-17
  • 刊出日期:  2025-03-05

/

返回文章
返回