搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超构表面多通大容量完美矢量涡旋光束的产生及调控研究

张胜蓝 田喜敏 许军伟 徐亚宁 李亮 刘杰龙

引用本文:
Citation:

基于超构表面多通大容量完美矢量涡旋光束的产生及调控研究

张胜蓝, 田喜敏, 许军伟, 徐亚宁, 李亮, 刘杰龙

Generation and Independent-Manipulation of Multi-Channel High-Capacity Perfect Vector Vortex Beams Based on Geometric Metasurfaces

Zhang Shenglan, Tian Ximin, Xu Junwei, Xu Yaning, Li Liang, Liu Jielong
PDF
导出引用
  • 完美矢量涡旋光束除具有螺旋相位、环状强度分布及非均匀偏振分布外,其亮环半径及环宽度恒定,不受拓扑荷数变化的影响,且同时携带自旋角动量和轨道角动量,因此在很多光学领域具有重要应用。超构表面作为一种亚波长结构排列而成的平面光学器件,能够精准调控电磁波的相位、偏振和振幅,为集成化矢量光场调控器件的实现提供变革性解决方案。然而,现有超构表面在生成产生多通大容量、偏振和轨道角动量独立操控的完美矢量涡旋光束方面仍面临严峻挑战。为此,本文基于超构表面平台,利用纯几何相位调制的自旋多路复用方案,通过叠加两正交偏振完美涡旋光束,实现了多通大容量完美矢量涡旋光束。通过调控两正交偏振完美涡旋光束的初始相位差、振幅比及拓扑荷数,实现了具备任意偏振阶次和偏振分布特性的完美矢量涡旋光束;通过精心设计超构表面相位分布及光束传播路径,生成了多重完美矢量涡旋光束阵列。此外,基于完美矢量涡旋光束偏振阶次和偏振态两个并行维度,本文成功演示了一种兼具安全性高和强鲁棒性的光学信息加密方案。该工作旨在建立一个超紧凑、稳健的平台,以在中红外波段生成多通大容量完美矢量涡旋光束,推动其在光学加密、粒子操控和量子光学等领域的应用。
    Perfect vector vortex beams (PVVBs), which are characterized by spiral phase,donut-shaped intensity profile and inhomogeneous polarization of a light beam carrying spin angular momentum (SAM) and orbital angular momentum (OAM), have a constant bright ring radius and ring width that are unaffected by changes in their carrying topological charge (TC),enabling them highly valuable in many optical fields. Metasurfaces, as planar optical devices composed of subwavelength nanostructures, can precisely control the phase, polarization, and amplitude of electromagnetic waves, providing a revolutionary solution for integrated vector field manipulation devices. However, existing metasurfaces still encounter significant challenges in generating high-capacity, polarization- and orbital angular momentum-independent controlled perfect vector vortex beams. To address this issue, this work utilizes a spin-multiplexed scheme based on pure geometric phase modulation on a metasurface platform to achieve high-capacity polarization- and OAM-independent controlled PVVBs. The metasurfaces with a combined phase profile of a spiral phase plate, an axicon, and a focusing (Fourier) lens are spatially encoded by rectangular Ge2Sb2Se4Te1 (GSST) nanopillar with various orientations on a CaF2 square substrate. When illuminated by circularly polarized light with opposite chirality, the metasurfaces can generate diverse perfect vector vortex beams (PVBs) with arbitrary topological charges. For linearly polarized incidence, the metasurface was employed to induce PVVBs by coherently superposing PVBs with spin-opposite OAM modes. The polarization states and polarization orders of the generated PVVBs can be flexibly customized by controlling the initial phase difference, amplitude ratio, and topological charges of the two orthogonal PVB components. Notably, through precise design of the metasurface's phase distribution and the propagation path of the generated beams, space and polarization multiplexing can be realized in a compact manner of spatial PVVB arrays, significantly increasing both information channels and dimensions for the development of vortex communication capacity. Based on this, we demonstrated an innovative optical information encryption scheme using a single metasurface to encode personalized polarization states and OAM in parallel channels embedded within multiple PVVBs. This work aims to establish an ultra-compact, robust platform for generating multi-channel high-capacity polarization- and OAM-independent controlled PVVBs in the mid-infrared range, and promote their applications in optical encryption, particle manipulation, and quantum optics.
  • [1]

    Guo Y H, Zhang S C, Pu M B, He Q, Jin J J,Xu M F, Zhang Y X, Gao P, Luo X G 2021Light: Sci. & Appl. 10 63

    [2]

    Shen Y J, Yang X L, Naidoo D, Fu X, Forbes A 2020Optica 7 820

    [3]

    Liu Z X, Liu Y Y, Ke Y G, Liu Y C, Shu W X, Luo H L, Wen S C 2016Photonics Res. 5 15.

    [4]

    Liu M Z, Huo P C, Zhu W Q,Zhang C, Zhang S, Song M W, Zhang S, Zhou Q W,Chen L, Lezec H 2021Nat. Commun. 12 2230

    [5]

    Xu Y N, Tian X M, Xu J W, Zhang S L, Huang Y F, Li L, Liu J L, Xu K, Yu Z J, Li Z Y 2024 J. Phys. D: Appl. Phys. 57 425104.

    [6]

    Ma Y B, Rui G H, Gu B, Cui Y P 2017Sci. Rep. 7 14611

    [7]

    Shao W, Huang S J, Liu X P, Chen M S 2018Opt. Commun. 427 545.

    [8]

    Xu Y, Su X R, Chai Z, Li J L 2024Laser Photon. Rev. 18 2300355.

    [9]

    Niv A A, Biener G, Kleiner V, Hasman E 2006Opt. Express 14 4208.

    [10]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V 2013Opt. Lett. 38 534

    [11]

    Vaity P, Rusch L 2015 Opt. Lett. 40597

    [12]

    Li D L, Feng S T, Nie S P, Chang C L, Ma J, Yuan C J 2019J. Appl. Phys. 125 073105

    [13]

    Zou X J, Zheng G G, Yuan Q, Zang W B, Chen Run, Li T Y, Li L, Wang S M, Wang Z L, Zhu S N 2020PhotoniX 1 1

    [14]

    Zhang C Y, Zhang B F, Ge S K, Han C X, Wang S Z, Han Q Y,Gao W, Chu T S, Dong J, Zhang M D 2024Opt. Express 32 31359

    [15]

    Zhang X L, Gong Y H, Li M, Li H 2024Opt. Express 32 8069

    [16]

    Kim I, Ansari M A, Mehmood M Q, Kim W Q, Jang J, Zubair M, Kim Y K, Rho J 2020. Adv. Mater. 32 2004664

    [17]

    Huang Y F, Tian X M, Zhang S L, Xu Y N, Xu J W, Yu Z J, Jiang T, Li Z Y 2024Opt. Lasers Eng. 183 108523

    [18]

    He H R, Peng M Y, Cao G T, Li Y B, Liu H, Yang H 2024Opt. Laser Technol. 180 111555

    [19]

    Liu Y C, Ke Y G, Zhou J X, Liu Y Y, Luo H L, Wen S C, Fan D Y 2017Sci. Rep. 7 44096

    [20]

    Zhang Y C, Liu W W, Gao J, Yang X D 2018Adv. Opt. Mater. 6 1701228

    [21]

    Tian S N, Qian, Z H, Guo H M 2022Opt. Express 30 21808

    [22]

    Liu Y, Zhou C X, Guo K L, Wei Z C, Liu H Z 2022Opt. Express 30 30881

    [23]

    Vogliardi A, Ruffato G, Bonaldo D, Zilio S D, Romanato F 2023Opt. Lett. 48 4925

    [24]

    Gu M N, Cheng C, Zhan Z J, Zhang Z H, Cui G S, Zhou Y X, Zeng X Y, Gao S, Choi, D-Y, Cheng C F 2024ACS Photonics 11 204

    [25]

    He J N, Wan M L, Zhang X P, Yuan S Q, Zhang L F, Wang J Q 2022 Opt. Express 304806

    [26]

    Zhou T, Liu Q, Liu Y S, Zang X F 2020Opt. Lett. 45 5941

    [27]

    Huang K, Deng J, Leong H S, Yap S L K, Yang R B, Teng J H, Liu H 2019Laser Photonics Rev. 13 1800289

    [28]

    Xie J F, Guo H M, Zhuang S L, Hu J B 2021Opt. Express 29 3081

    [29]

    Zhang Z H, Li T, Jiao X F, Song G F, Xu Y 2020Appl. Sci. 10 5716

  • [1] 高雨洁, 李晋红, 王静, 刘晋宏, 尹晓金. 柱矢量涡旋光束在自由空间中传输时角动量的全矢量特性. 物理学报, doi: 10.7498/aps.74.20241344
    [2] 张卓, 张景风, 孔令军. 基于光束偏移器的光的轨道角动量分束器. 物理学报, doi: 10.7498/aps.73.20231874
    [3] 陈鑫淼, 李海英, 吴涛, 孟祥帅, 黎凤霞. 金属目标对贝塞尔涡旋波束的近场电磁散射特性. 物理学报, doi: 10.7498/aps.72.20222192
    [4] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用. 物理学报, doi: 10.7498/aps.72.20231521
    [5] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, doi: 10.7498/aps.72.20230684
    [6] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束. 物理学报, doi: 10.7498/aps.71.20220835
    [7] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, doi: 10.7498/aps.70.20200975
    [8] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, doi: 10.7498/aps.70.20211119
    [9] 冯加林, 施宏宇, 王远, 张安学, 徐卓. 基于场变换理论的大角度涡旋电磁波生成方法. 物理学报, doi: 10.7498/aps.69.20200365
    [10] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, doi: 10.7498/aps.67.20171899
    [11] 张昊, 常琛亮, 夏军. 单环多段光强分布检测光学涡旋拓扑荷值. 物理学报, doi: 10.7498/aps.65.064101
    [12] 施建珍, 杨深, 邹亚琪, 纪宪明, 印建平. 用四台阶相位板产生涡旋光束. 物理学报, doi: 10.7498/aps.64.184202
    [13] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, doi: 10.7498/aps.63.150301
    [14] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, doi: 10.7498/aps.61.174204
    [15] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, doi: 10.7498/aps.60.014208
    [16] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, doi: 10.7498/aps.59.8490
    [17] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, doi: 10.7498/aps.58.8302
    [18] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, doi: 10.7498/aps.56.2184
    [19] 董一鸣, 徐云飞, 张 璋, 林 强. 复杂像散椭圆光束的轨道角动量的实验研究. 物理学报, doi: 10.7498/aps.55.5755
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, doi: 10.7498/aps.53.413
计量
  • 文章访问数:  30
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-17

/

返回文章
返回