搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二价乙烷分子离子三体碎裂的解离机制研究

张紫琪 闫顺成 陶琛玉 余璇 张少锋 马新文

引用本文:
Citation:

二价乙烷分子离子三体碎裂的解离机制研究

张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文

Investigating dissociation mechanism of ethane dication via three-body fragmentation

ZHANG Ziqi, YAN Shuncheng, TAO Chenyu, YU Xuan, ZHANG Shaofeng, MA Xinwen
科大讯飞翻译 (iFLYTEK Translation)
PDF
导出引用
  • 分子离子广泛存在于行星大气的电离层中,其碎裂可以产生多个离子和中性碎片。研究末态产物的动能分布和生成机理,可以促进理解行星大气的逃逸等天文现象。本文开展了电子碰撞乙烷的双电离碎裂实验,重点研究了C2H62+离子C-C键断裂后形成CH3+/CH2+/H的三体解离通道。我们直接测量了CH3+和CH2+离子的三维动量,然后利用动量守恒重构了H的动量。通过动能释放谱、Dalitz图、牛顿图分析了三体碎裂的解离机制。发现协同解离是产生该通道的主要机制,另有部分次序解离的贡献,其第一步是C2H62+解离生成H和亚稳态C2H52+,第二步是C2H52+碎裂生成CH3+和CH2+。实验发现H原子动能分布较广,最高能量甚至达到10 eV,远高于土卫六大气的逃逸能量,因而该解离路径对H逃逸过程有贡献。
    Molecular ions are widely distributed in the ionosphere of planetary atmospheres, and their fragmentations can generate different ions and neutral fragments. Studying the kinetic energy distribution and generation mechanism of the final products is helpful in understanding fundamental phenomena in astrophysics and plasma physics. In particular, ethane is an important molecule found in Titan and comet, its fragmentation may be involved in the generation of complex hydrocarbons, as well as the atmospheric escape processes on Titan.
    In this paper, we carried out the experiment on ethane fragmentation by electron impact, focusing on the three-body fragmentation channel from C2H62+ to CH3+/CH2+/H. We directly measured the three-dimensional momenta of CH3+ and CH2+ ions, and then reconstructed the momentum of the H atom using momentum conservation law. Based on these analyses, we investigated the kinetic energy release (KER) spectrum and the fragmentation mechanisms.
    In the TOF coincidence map of the ions, we observed two channels: channel (1) represents the two-body dissociation generating CH3+/CH3+, and channel (2) represents the three-body dissociation generating CH3+/CH2+/H, which is mentioned above. It is found that the neutral H from channel (2) has a wide kinetic energy distribution, ranging from 0 eV up to more than 10 eV. This feature indicates the dissociation of the C-H bond is from multiple electronic states. Since the escape threshold of H in Titan's ionosphere is 0.02 eV, the vast majority of the H atoms produced in channel (2) can escape into outer space. In addition, the kinetic energy sum of CH3+ and CH2+in channel (2) is found to be similar to the KER of channel (1), indicating that the C-H dissociation presents limited influence on the energy sum of the CH2+ and CH3+.
    The corresponding fragmentation mechanism of channel (2) was also analyzed in this paper. We divided the overall KER spectrum into three parts, 0-6 eV, 6-9 eV, and 9-11 eV, and reconstructed the respective Dalitz plots and Newton diagrams under different KER conditions. In all Dalitz plots, there is a bright spot representing the concerted dissociation and a horizontal belt representing the sequential dissociation. The concerted dissociation is concluded as the main mechanism, while the sequential dissociation plays a minor role.
    The bright spot in the Dalitz plot shifts from the center to the left as the KER increases. This feature arises from the following fact, the CH2+lies between the H and the CH3+ in the concerted dissociation, and it feels the recoil both from H and CH3+. Considering the Coulomb potential from CH3+ is constant, enhancing the C-H dissociation energy will decrease the CH2+ kinetic energy. The belt in the Dalitz suggests the sequential dissociation as a two-step process, the first step is the dissociation of C2H62+ to generate H and metastable C2H52+, and the second step is the fragmentation from C2H52+ to CH3+ and CH2+.
    We also reconstructed the Newton diagrams under different KER conditions to give further evidence of the sequential dissociation from the metastable C2H52+, rather than from the metastable CH3+orCH4+. Indeed, for the former case, the center positions of the two half circles in Newton diagrams appear correctly. Oppositely, for the latter two cases, the center positions notably deviate from the expected values. This means the sequential dissociation from C2H52+ is dominant, which agrees excellently with the conclusion from the Dalitz plots.
  • [1]

    Mathur D 2004Phys. Rep. 391 1

    [2]

    Adoui L, Muranaka T, Tarisien M, Legendre S, Laurent G, Cassimi A, Chesnel J Y, Fléchard X, Frémont F, Gervais B, Giglio E, Hennecart D 2006Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 245 94

    [3]

    Aitelhadjali Z, Kessal S, Quinto M A, Oubaziz D, Champion C 2016Int. J. Mass Spectrom. 403 53

    [4]

    Shen Z J, Wang E L, Gong M M, Shan X, Chen X J 2016J. Chem. Phys. 145 234303

    [5]

    Chen L, Wang E L, Shan X, Shen Z J, Zhao X, Chen X J 2021Phys. Rev. A 104 032814

    [6]

    Jiang T, Wang B, Zhang Y, Wei L, Chen S, Yu W, Zou Y, Chen L, Wei B 2019Phys. Rev. A 100 022705

    [7]

    Duley A, Kelkar A H 2023Atoms 11 75

    [8]

    Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014Phys. Rev. A 90 062705

    [9]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014J. Chem. Phys. 140 124303

    [10]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018Phys. Rev. A 97 022703

    [11]

    Wei L, Chen S, Zhang Y, Wang B, Yu W, Ren B, Han J, Zou Y, Chen L, Wei B 2020Eur. Phys. J. D 74 133

    [12]

    Das N, De S, Bhatt P, Safvan C P, Majumdar A 2023J. Chem. Phys. 158 084307

    [13]

    Yuan H, Xu S, Wang E, Xu J, Gao Y, Zhu X, Guo D, Ma B, Zhao D, Zhang S, Yan S, Zhang R, Gao Y, Xu Z, Ma X 2022J. Phys. Chem. Lett. 13 7594

    [14]

    Wang Y, Li Y, Gao Y, Chen Y, Zhou Z, Shen X, Jin G 2024Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 557 165547

    [15]

    Abplanalp M J, Kaiser R I 2016Astrophys. J. 827 132

    [16]

    Kim Y S, Bennett C J, Chen L H, O'Brien K, Kaiser R I 2010Astrophys. J. 711 744

    [17]

    Russo N D, Vervack Jr R J, Weaver H A, Lisse C M 2009Icarus 200 271

    [18]

    Kanya R, Kudou T, Schirmel N, Miura S, Weitzel K M, Hoshina K, Yamanouchi K 2012J. Chem. Phys. 136 204309

    [19]

    Schirmel N, Reusch N, Horsch P, Weitzel K M 2013Faraday Discuss. 163 461

    [20]

    Boran Y, Gutsev G L, Kolomenskii A A, Zhu F, Schuessler A, Strohaber J 2018J. Phys. B-At. Mol. Opt. Phys. 51 035003

    [21]

    Zhang Y, Ren B, Yang C L, Wei L, Wang B, Han J, Yu W, Qi Y, Zou Y, Chen L, Wang E, Wei B 2020Comm. Chem. 3 160

    [22]

    Wei L, Lam C S, Zhang Y, Ren B, Han J, Wang B, Zou Y, Chen L, Lau K C, Wei B 2021J. Phys. Chem. Lett. 12 5789

    [23]

    Yoshida S, Majima T, Tsuchida H, Saito M 2020X-Ray Spectrom. 49 177

    [24]

    Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 108 425

    [25]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000Phys. Rep. 330 95

    [26]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003Rep. Prog. Phys. 66 1463

    [27]

    Ullrich J, Schmidt-Böcking H 1987Phys. Lett. A 125 193

    [28]

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011Acta Phys. Sin. 60 113401(in Chinese) [郭大龙, 马新文, 冯文天, 张少锋, 朱小龙2011物理学报 60 113401]

    [29]

    Yan S, Zhu X L, Zhang S F, Zhao D M, Zhang P, Wei B, Ma X 2020Phys. Rev. A 102 032809

    [30]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018Phys. Rev. A 97 010701

    [31]

    Falcinelli S, Rosi M, Candori P, Vecchiocattivi F, Farrar J M, Pirani F, Balucani N, Alagia M, Richter R, Stranges, S 2014Lect. Notes Comput. Sci. LNCS 8579 554

  • [1] 彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真. 大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟. 物理学报, doi: 10.7498/aps.74.20241241
    [2] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验. 物理学报, doi: 10.7498/aps.70.20201685
    [3] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, doi: 10.7498/aps.69.20201035
    [4] 张敏, 闫顺成, 高永, 张少锋, 马新文. 分子离子碎裂过程中动能释放的校准方法. 物理学报, doi: 10.7498/aps.69.20200901
    [5] 申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅. 中能Ne4+离子诱导的羰基硫分子三体碎裂动力学分析. 物理学报, doi: 10.7498/aps.67.20172163
    [6] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学. 物理学报, doi: 10.7498/aps.67.20181468
    [7] 孙启响, 闫冰. CH3I2+的二体、三体解离过程的理论研究. 物理学报, doi: 10.7498/aps.66.093101
    [8] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, doi: 10.7498/aps.65.053302
    [9] 林康, 宫晓春, 宋其迎, 季琴颖, 马俊杨, 张文斌, 陆培芬, 曾和平, 吴健. 双色圆偏振飞秒脉冲驱动CO分子不对称解离. 物理学报, doi: 10.7498/aps.65.224209
    [10] 代丽姣, 李洪玉. 氘代乙烷团簇库仑爆炸产生高能氘核和中子的研究. 物理学报, doi: 10.7498/aps.63.243601
    [11] 郭大龙, 马新文, 冯文天, 张少锋, 朱小龙. 反应显微成像谱仪动量及能量分辨因素分析. 物理学报, doi: 10.7498/aps.60.113401
    [12] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究. 物理学报, doi: 10.7498/aps.60.093401
    [13] 陈高飞, 公茂琼, 沈俊, 邹鑫, 吴剑峰. 水平管内二氟乙烷两相流动摩擦压降实验研究. 物理学报, doi: 10.7498/aps.59.8669
    [14] 曹士娉, 马新文, A. Dorn, M. Dürr, J. Ullrich. 近阈值下He原子的双电子电离实验中出射电子研究. 物理学报, doi: 10.7498/aps.56.6386
    [15] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离. 物理学报, doi: 10.7498/aps.55.2708
    [16] 唐碧峰, 熊平凡, 张 秀, 张 冰. 溴乙烷分子的质量分辨阈值光谱. 物理学报, doi: 10.7498/aps.55.4483
    [17] 姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤. 丙酮分子的共振增强多光子电离解离过程的实验研究. 物理学报, doi: 10.7498/aps.55.2210
    [18] 张现仁, 沈志刚, 陈建峰, 汪文川. 乙烷在中孔分子筛MCM-41中吸附的计算机分子模拟. 物理学报, doi: 10.7498/aps.52.163
    [19] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱. 物理学报, doi: 10.7498/aps.51.235
    [20] 王超英, 陈立泉, 陈竹生, 何元康. 聚环氧乙烷硫氰化钠络合物(PEO-NaSCN)离子导体电学性能的研究. 物理学报, doi: 10.7498/aps.33.854
计量
  • 文章访问数:  164
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-24

/

返回文章
返回