搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中能Ne4+离子诱导的羰基硫分子三体碎裂动力学分析

申丽丽 闫顺成 马新文 朱小龙 张少锋 冯文天 张鹏举 郭大龙 高永 海帮 张敏 赵冬梅

引用本文:
Citation:

中能Ne4+离子诱导的羰基硫分子三体碎裂动力学分析

申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅

Three-body fragmentation dynamics of OCS3+ induced by intermediate energy Ne4+ ion impact

Shen Li-Li, Yan Shun-Cheng, Ma Xin-Wen, Zhu Xiao-Long, Zhang Shao-Feng, Feng Wen-Tian, Zhang Peng-Ju, Guo Da-Long, Gao Yong, Hai Bang, Zhang Min, Zhao Dong-Mei
PDF
导出引用
  • 利用反应显微成像谱仪开展了56 keV/u的Ne4+离子与羰基硫(OCS)气体的交叉碰撞实验,研究了Ne4+离子诱导的OCS3+的碎裂动力学.通过符合探测三个末态离子,重构了OCS3+离子三体碎裂对应的牛顿图和Dalitz图,并明确区分了直接解离和次序解离两种碎裂过程.重构了OCS3+离子解离过程的动能释放(KER)分布,发现其峰值在25 eV处,同时在18 eV处有肩膀结构的存在,其中25 eV左右的峰来源于直接解离过程,18 eV处的肩膀结构来源于次序解离和非次序解离两种过程.通过分析不同能量和不同电荷态下重离子碰撞实验所得到的KER谱,发现微扰强度不是影响态布居的主要因素.OCS3+次序解离中的第二步KER的峰值在6.2 eV处.结合以往的实验结果,我们得出结论:多电离态的分子发生次序碎裂的根源在于二价离子碎片存在亚稳态,而重构得到的第二步KER可以反映亚稳态离子的电子态信息.
    The fragmentation experiment of OCS3+ induced by 56 keV/u Ne4+ ions is performed using reaction microscope, and the corresponding dissociation dynamics is investigated. By detecting the three fragment ions in coincidence, the three-dimensional (3D) momenta of all ions and the corresponding kinetic energy release (KER) distributions are reconstructed. It is found that a peak maximum of the KER distribution is locates at about 25 eV, and a shoulder structure appears around 18 eV. This result is consistent with previous heavy ion experimental results with different perturbation strengths. Taking into account that the KER distribution is related to the initial state population of the OCS3+ parent ions, it can be concluded that the perturbation strength is not a decisive parameter leading to the initial state population of OCS3+ ions. We also reconstruct the Newton diagram and Dalitz plot for the three-body fragmentation of OCS3+ ion, from which the sequential dissociation is distinguished from nonsequential dissociation clearly. By analyzing the kinetic energy of ions from each fragmentation process, we find that the KER peak at 25 eV corresponds to nonsequential dissociation process, but the shoulder at 18 eV arises from both sequential and nonsequential dissociation processes. This phenomenon suggests that the parent OCS3+ ions in ground state and low excitation states tend to fragment through sequential dissociation, while those in high excitation states tend to fragment through nosequential dissociation. Furthermore, we reconstruct the KER distributions in the second fragmentation step of sequential dissociation, whose peak maximum is at 6.2 eV, corresponding to X3, 1+ and 1 metastable states of CO2+ ion. A similar KER distribution is obtained for the second fragmentation step of the OCS4+ ion. By comparing our experimental results with previous ones, we conclude that the origin of sequential dissociation process is the existence of metastable state, and the reconstructed KER in the second step reflects the initial state information about the metastable state.
      Corresponding author: Yan Shun-Cheng, yanshuncheng@impcas.ac.cn;x.ma@impcas.ac.cn ; Ma Xin-Wen, yanshuncheng@impcas.ac.cn;x.ma@impcas.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0402300) and the National Nature Science Foundation of China (Grant Nos. U1532129, 11304325).
    [1]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Döner R 2010 Phys. Rev. Lett. 104 103201

    [2]

    Wang E, Shan X, Shen Z J, Li X Y, Gong M M, Tang Y G, Chen X J 2015 Phys. Rev. A 92 062713

    [3]

    Singh R K, Lodha G S 2006 Phys. Rev. A 74 022708

    [4]

    Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601

    [5]

    Wang E, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711

    [6]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708

    [7]

    Jana M R, Ray B, Ghosh P N, Safvan C P 2010 J. Phys. B:At. Mol. Opt. Phys. 43 215207

    [8]

    Wales B, Motojima T, Matsumoto J, Long Z J, Liu W K, Shiromaru H, Sanderson J 2012 J. Phys. B:At. Mol. Opt. Phys. 45 045205

    [9]

    Ramadhan A, Wales B, Gauthier I, MacDonald M, Zuin L, Sanderson J 2015 J. Phys:Conf. Ser. 635 112137

    [10]

    Ramadhan A, Wales B, Karimi R, Gauthier I, MacDonald M, Zuin L, Sanderson J 2016 J. Phys. B:At. Mol. Opt. Phys. 49 215602

    [11]

    Wales B, Bisson é, Karimi R, Beaulieu S, Ramadhan A, Giguère M, Long Z J, Liu W K, Kieffer J C, Légaré F, Sanderson J 2014 J. Electron. Spectrosc. Relat. Phenom. 195 332

    [12]

    Shen Z J, Wang E, Gong M M, Shan X, Chen X J 2016 J. Chem. Phys. 145 234303

    [13]

    Jana M R, Ghosh P N, Ray B, Bapat B, Kushawaha R K, Saha K, Prajapati I A, Safvan C P 2014 Eur. Phys. J. D 68 250

    [14]

    Ding X Y, Haertelt M, Schlauderer S, Schuurman M S, Naumov A Y, Villeneuve D M, McKellar A R W, Corkum P B, Staudte A 2017 Phys. Rev. Lett. 118 153001

    [15]

    Lundqvist M, Baltzer P, Edvardsson D, Karlsson L, Wannberg B 1995 Phys. Rev. Lett. 75 1058

    [16]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303

    [17]

    Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 Phys. Rev. A 90 062705

    [18]

    Guillemin R, Decleva P, Stener M, Bomme C, Marin T, Journel L, Marchenko T, Kushawaha R K, Jänkälä K, Trcera N, Bowen K P, Lindle D W, Piancastelli M N, Simon M 2015 Nat. Commun. 6 7166

    [19]

    Wu J, Kunitski M, Schmidt L Ph H, Jahnke T, Dörner R 2012 J. Chem. Phys. 137 104308

    [20]

    Xu S, Ma X, Ren X, Senftleben A, Pflger T, Dorn A, Ullrich J 2011 Phys. Rev. A 83 052702

    [21]

    Karimi R, Bisson é, Wales B, Beaulieu S, Giguère M, Long Z, Liu W K, Kieffer J C, Légaré F, Sanderson J 2013 J. Chem. Phys. 138 204311

    [22]

    Khan A, Misra D 2016 J. Phys. B:At. Mol. Opt. Phys. 49 055201

    [23]

    Zhu X L 2006 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[朱小龙 2006 博士学位论文 (兰州:中国科学院近代物理研究所)]

  • [1]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Döner R 2010 Phys. Rev. Lett. 104 103201

    [2]

    Wang E, Shan X, Shen Z J, Li X Y, Gong M M, Tang Y G, Chen X J 2015 Phys. Rev. A 92 062713

    [3]

    Singh R K, Lodha G S 2006 Phys. Rev. A 74 022708

    [4]

    Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601

    [5]

    Wang E, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711

    [6]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708

    [7]

    Jana M R, Ray B, Ghosh P N, Safvan C P 2010 J. Phys. B:At. Mol. Opt. Phys. 43 215207

    [8]

    Wales B, Motojima T, Matsumoto J, Long Z J, Liu W K, Shiromaru H, Sanderson J 2012 J. Phys. B:At. Mol. Opt. Phys. 45 045205

    [9]

    Ramadhan A, Wales B, Gauthier I, MacDonald M, Zuin L, Sanderson J 2015 J. Phys:Conf. Ser. 635 112137

    [10]

    Ramadhan A, Wales B, Karimi R, Gauthier I, MacDonald M, Zuin L, Sanderson J 2016 J. Phys. B:At. Mol. Opt. Phys. 49 215602

    [11]

    Wales B, Bisson é, Karimi R, Beaulieu S, Ramadhan A, Giguère M, Long Z J, Liu W K, Kieffer J C, Légaré F, Sanderson J 2014 J. Electron. Spectrosc. Relat. Phenom. 195 332

    [12]

    Shen Z J, Wang E, Gong M M, Shan X, Chen X J 2016 J. Chem. Phys. 145 234303

    [13]

    Jana M R, Ghosh P N, Ray B, Bapat B, Kushawaha R K, Saha K, Prajapati I A, Safvan C P 2014 Eur. Phys. J. D 68 250

    [14]

    Ding X Y, Haertelt M, Schlauderer S, Schuurman M S, Naumov A Y, Villeneuve D M, McKellar A R W, Corkum P B, Staudte A 2017 Phys. Rev. Lett. 118 153001

    [15]

    Lundqvist M, Baltzer P, Edvardsson D, Karlsson L, Wannberg B 1995 Phys. Rev. Lett. 75 1058

    [16]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303

    [17]

    Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 Phys. Rev. A 90 062705

    [18]

    Guillemin R, Decleva P, Stener M, Bomme C, Marin T, Journel L, Marchenko T, Kushawaha R K, Jänkälä K, Trcera N, Bowen K P, Lindle D W, Piancastelli M N, Simon M 2015 Nat. Commun. 6 7166

    [19]

    Wu J, Kunitski M, Schmidt L Ph H, Jahnke T, Dörner R 2012 J. Chem. Phys. 137 104308

    [20]

    Xu S, Ma X, Ren X, Senftleben A, Pflger T, Dorn A, Ullrich J 2011 Phys. Rev. A 83 052702

    [21]

    Karimi R, Bisson é, Wales B, Beaulieu S, Giguère M, Long Z, Liu W K, Kieffer J C, Légaré F, Sanderson J 2013 J. Chem. Phys. 138 204311

    [22]

    Khan A, Misra D 2016 J. Phys. B:At. Mol. Opt. Phys. 49 055201

    [23]

    Zhu X L 2006 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[朱小龙 2006 博士学位论文 (兰州:中国科学院近代物理研究所)]

  • [1] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制. 物理学报, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [2] 张江风, 田笑含, 张晓玲, 孟庆端. InSb芯片碎裂与迸溅金点的关系. 物理学报, 2022, 71(2): 028502. doi: 10.7498/aps.71.20211535
    [3] 李桃桃, 苑航, 王兴, 张震, 郭大龙, 朱小龙, 闫顺成, 赵冬梅, 张少锋, 许慎跃, 马新文. 50-keV/u Ne8+离子碰撞导致的$\bf{{\text{C}}_3}{\text{H}}_4^{2 + }$三体解离机制. 物理学报, 2022, 71(9): 093401. doi: 10.7498/aps.71.20212202
    [4] 张江风, 田笑含, 张晓玲, 孟庆端. InSb芯片碎裂与迸溅金点关系研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211535
    [5] 张敏, 闫顺成, 高永, 张少锋, 马新文. 分子离子碎裂过程中动能释放的校准方法. 物理学报, 2020, 69(20): 203401. doi: 10.7498/aps.69.20200901
    [6] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [7] 霍天旭, 乔亮, 王涛, 李发伸. 取向易面各向异性羰基铁粉体的高频磁性研究(已撤稿). 物理学报, 2014, 63(16): 167503. doi: 10.7498/aps.63.167503
    [8] 李仁顺, 周宇璐, 张宝玲, 邓爱红, 侯氢. 氦在材料中基于扩散机理的热释放特征. 物理学报, 2011, 60(4): 046604. doi: 10.7498/aps.60.046604
    [9] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [10] 张亮, 张立凤, 吴海燕, 李刚. 正压Rossby波扰动能量. 物理学报, 2010, 59(1): 44-53. doi: 10.7498/aps.59.44
    [11] 刘慧英, 朱梓忠, 杨 勇. Li嵌入Mg2Ge的反应次序和电子结构变化. 物理学报, 2008, 57(8): 5182-5190. doi: 10.7498/aps.57.5182
    [12] 刘全慧. 曲面上的动量和动能算符. 物理学报, 2008, 57(2): 674-677. doi: 10.7498/aps.57.674
    [13] 李文飞, 徐瑚珊, 张丰收, 李剑锋, 陈列文. 原子核多重碎裂中同位旋相分比的产生机理研究. 物理学报, 2002, 51(8): 1700-1705. doi: 10.7498/aps.51.1700
    [14] 马余刚. 原子核的同位旋对碎裂产物的影响. 物理学报, 2000, 49(4): 654-664. doi: 10.7498/aps.49.654
    [15] 高海滨, 方渡飞, 陆福全. C60+的碰撞解离研究. 物理学报, 1993, 42(12): 1910-1913. doi: 10.7498/aps.42.1910
    [16] 董国胜, 陆春明, 李喆深, 王迅. InSb(111)表面硫处理的研究. 物理学报, 1992, 41(6): 1036-1043. doi: 10.7498/aps.41.1036
    [17] 杨炳良, 刘百勇, 郑耀宗, 王曦. SiOxNy薄膜高场电子陷阱和释放特性的研究. 物理学报, 1991, 40(11): 1855-1861. doi: 10.7498/aps.40.1855
    [18] 林金谷, 苏阳, 单军, 杨君慧, 傅克坚. 紫外激光解离羰基铁生成超细粉末. 物理学报, 1987, 36(9): 1194-1198. doi: 10.7498/aps.36.1194
    [19] 玻璃半导体小组. 硫砷玻璃光存储记录材料. 物理学报, 1975, 24(5): 366-371. doi: 10.7498/aps.24.366
    [20] 沈洪涛, 阮图南, 李扬国. F19的转动能谱. 物理学报, 1959, 15(8): 440-446. doi: 10.7498/aps.15.440
计量
  • 文章访问数:  6386
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-30
  • 修回日期:  2017-12-11
  • 刊出日期:  2019-02-20

/

返回文章
返回