搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

50-keV/u Ne8+离子碰撞导致的$\bf{{\text{C}}_3}{\text{H}}_4^{2 + }$三体解离机制

李桃桃 苑航 王兴 张震 郭大龙 朱小龙 闫顺成 赵冬梅 张少锋 许慎跃 马新文

引用本文:
Citation:

50-keV/u Ne8+离子碰撞导致的$\bf{{\text{C}}_3}{\text{H}}_4^{2 + }$三体解离机制

李桃桃, 苑航, 王兴, 张震, 郭大龙, 朱小龙, 闫顺成, 赵冬梅, 张少锋, 许慎跃, 马新文

Three-body fragmentation dynamics of C3H4 induced by 50-keV/u Ne8+ ion impact

Li Tao-Tao, Yuan Hang, Wang Xing, Zhang Zhen, Guo Da-Long, Zhu Xiao-Long, Yan Shun-Cheng, Zhao Dong-Mei, Zhang Shao-Feng, Xu Shen-Yue, Ma Xin-Wen
PDF
HTML
导出引用
  • 利用反应显微成像谱仪开展了50-keV/u Ne8+ 离子与C3H4分子碰撞实验, 研究了丙二烯(CH2CCH2)和丙炔(CH3CCH)两种同分异构分子形成${{\text{C}}_3}{\text{H}}_4^{2 + }$二价离子并解离产生H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H的过程. 实验获得了H+${{\text{C}}_3}{\text{H}}_2^ + $的动量, 进而通过动量守恒得到第3个碎片的动量. 通过分析3个碎片的动能及解离的动能释放鉴别出未被探测的碎片为中性H原子的事件. 借助Dalitz图、Newton图以及碎片产物的角分布等分析了该通道的动力学机制. 结果表明, 次序解离是该解离通道的主要机制, 在碎裂过程中二价母体离子先解离成H+${{\text{C}}_3}{\text{H}}_3^ + $, 中间体的${{\text{C}}_3}{\text{H}}_3^ + $离子再进一步解离成${{\text{C}}_3}{\text{H}}_2^ + $和H原子.
    The experiment on collision between 50-keV/u Ne8+ ion and C3H4 molecule is carried out by reaction microscopic imaging spectrometer. The process of forming the $\rm C_3H_4^{2+}$ divalent ion from propylene (CH2CCH2) and proacetylene (CH3CCH) and then dissociating to produce H+ and C3H2+ $\rm C_3H_2^+$ ions and H atom is studied. Using the reaction microscope, the momentum vector of H+ ion and the momentum vector of $\rm C_3H_2^+$ ion are directly obtained, and then the momentum of the undetected fragment is reconstructed according to momentum conservation. By analyzing the kinetic energy of the three fragments and the total kinetic energy released from the dissociation process, the events with H atom as the third fragment are discriminated from H+, and thus the H+ ion, $ \rm C_3H_2^+ $ ion, and H atom are identified. In addition, it is found that the sequential fragmentation pathway in which H+ ion and $\rm C_3H_3^+$ ion are produced in the first step followed by dissociation of $ \rm C_3H_3^+ $ into $ \rm C_3H_2^+ $ ion and H atom in the second step is the dominant dissociation mechanism according to the detailed analyses of the Dalitz plot, Newton diagram and α distribution.
      通信作者: 许慎跃, s.xu@impcas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0402300)和国家自然科学基金(批准号: 11674332)资助的课题.
      Corresponding author: Xu Shen-Yue, s.xu@impcas.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300) and the National Nature Science Foundation of China (Grant No. 11674332).
    [1]

    Janev R K 1995 Atomic and Molecular Processes in Fusion Edge Plasmas (Boston: Springer) p3

    [2]

    Sada P V, Bjoraker G L, Jennings D E, McCabe G H, Romani P N 1998 Icarus 136 192Google Scholar

    [3]

    Xu S Y, Zhu X L, Feng W T, Guo D L, Zhao Q S, Yan S C, Zhang P J, Zhao D M, Gao Y, Zhang S F, Yang J, Ma X 2018 Phys. Rev. A 97 062701Google Scholar

    [4]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Döner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [5]

    Hsieh S, Eland J H D 1997 J. Phys. B: At. Mol. Opt. Phys. 30 4515Google Scholar

    [6]

    Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601Google Scholar

    [7]

    Yan S C, Zhu X L, Zhang P J, Ma X, Feng W T, Gao Y, Xu S Y, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [8]

    Yang H, Wang E L, Dong W X, Gong M M, Shen Z J, Tang Y G, Shan X, Chen X J 2018 Phys. Rev. A 97 052703Google Scholar

    [9]

    Wu J, Kunitski M, Schmidt L Ph H, Jahnke T, Dörner R 2012 J. Chem. Phys. 137 104308Google Scholar

    [10]

    Gong X C, Kunitski M, Ph H Schmidt L, Jahnke T, Czasch A, Dörner R, Wu J 2013 Phys. Rev. A 88 013422Google Scholar

    [11]

    Ding X Y, Haertelt M, Schlauderer S, Schuurman M, Naumov A, Villeneuve D, McKellar A, Corkum P, Staudte A 2013 Phys. Rev. Lett. 118 153001Google Scholar

    [12]

    Tielens A 2013 Rev. Mod. Phys. 85 1021Google Scholar

    [13]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [14]

    Wang E L, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711Google Scholar

    [15]

    Wang X C, Zhang Y, Lu D, Lu G C, Wei B R, Zhang B H, Tang Y J, Hutton R, Zou Y M 2014 Phys. Rev. A 90 062705Google Scholar

    [16]

    Kusakabe T, Satoh S, Tawara H, Kimura M 2001 Phys. Rev. Lett. 87 328Google Scholar

    [17]

    Scully S, Senthil V, Wyer J, Shah M, Montenegro E, Kimura M, Tawara H 2005 Phys. Rev. A 72 030701Google Scholar

    [18]

    Mebel A M, Bandrauk A D 2008 J. Chem. Phys. 129 224311Google Scholar

    [19]

    Psciuk B T, Tao P, Schlegel H B 2010 J. Phys. Chem. A 114 7653Google Scholar

    [20]

    Xu H L, Okino T, Yamanouchi K 2009 J. Chem. Phys. Chem. Phys. Lett. 469 255Google Scholar

    [21]

    Xu H L, Okino T, Yamanouchi K 2009 J. Chem. Phys. 131 1659 151102Google Scholar

    [22]

    Xu H L, Okino T, Yamanouchi K 2011 Appl. Phys. A 104 941Google Scholar

    [23]

    Okino T, Watanabe A, Xu H L, Yamanouchi K 2012 Phys. Chem. Chem. Phys. 14 4230Google Scholar

    [24]

    Okino T, Watanabe A, Xu H L, Yamanouchi K 2012 Phys. Chem. Chem. Phys. 14 10640Google Scholar

    [25]

    Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701Google Scholar

    [26]

    Ma X W, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707Google Scholar

    [27]

    Yuan H, Xu S Y, Li T T, Liu Y, Qian D B, Guo D L, Zhu X L, Ma X W 2020 Phys. Rev. A 102 062808Google Scholar

    [28]

    Li Y T, Xu S Y, Guo D L, Jia S K, Jiang X J, Zhu X L, Ma X W 2019 J. Chem. Phys. 150 144311Google Scholar

  • 图 1  (a) CH2CCH2和(b) CH3CCH 二维飞行时间谱[8], 其中红色椭圆对应H+ + ${{\text{C}}_3}{\text{H}}_2^ + $的事件; (c) CH2CCH2和 (d) CH3CCH分子的KER-H+能量的二维符合谱; (e) CH2CCH2和 (f) CH3CCH三体碎裂${{\text{C}}_3}{\text{H}}_4^{2 + }$ → H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H通道的KER分布; (g) CH2CCH2和(h) CH3CCH对应的H+和未探测粒子动能(H+/H0)的二维符合谱

    Fig. 1.  Two-dimensional time-of-flight (TOF) spectra, in which the events of red oval corresponds to the H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ for (a) CH2CCH2 and (b) CH3CCH; two-dimensional coincidence correlation spectra of KER-H+ energy of (c) CH2CCH2 and (d) CH3CCH; the KER distribution of (e) CH2CCH2 and (f) CH3CCH for three-body fragmentation of ${{\text{C}}_3}{\text{H}}_4^{2 + }$ → H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H channel; two-dimensional coincidence spectra of kinetic energies between H+ and undetected particle (H+/H0) of (g) CH2CCH2 and (h) CH3CCH.

    图 2  (a) CH2CCH2 和 (b) CH3CCH三体解离${{\text{C}}_3}{\text{H}}_4^{2 + }$→H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H过程的Dalitz 图

    Fig. 2.  Dalitz plot for three-body dissociation channel ${{\text{C}}_3}{\text{H}}_4^{2 + }$→H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H of (a) CH2CCH2 and (b) CH3CCH.

    图 3  CH2CCH2 (a)—(f) 和 CH3CCH (g)—(l)三体解离${{\text{C}}_3}{\text{H}}_4^{2 + }$ → H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H过程的Newton图 (a)和(g) 包含所有事件, 其他为以第3个粒子H的能量为选择条件的Newton图, 相应能量分别为0—0.5 eV (b), (h); 0.5—1.0 eV (c), (i); 1.0—2.0 eV (d), (j); 2.0—4.0 eV (e), (k); 4.0—6.0 eV (f), (l)

    Fig. 3.  Newton diagrams of CH2CCH2 (a)−(f) and CH3CCH (g)−(l) for three-body fragmentation channel ${{\text{C}}_3}{\text{H}}_4^{2 + }$→H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H. (a) and (g) are Newton diagrams for all the events. The others are for different energy ranges of the neutral H: 0−0.5 eV for (b), (h), 0.5−1.0 eV for (c), (i); 1.0−2.0 eV for (d), (j); 2.0−4.0 eV for (e), (k); 4.0−6.0 eV for (f), (l).

    图 4  (a) CH2CCH2 和 (b) CH3CCH 分子次序解离路径${{\text{C}}_3}{\text{H}}_4^{2 + }$→H++${{\text{C}}_3}{\text{H}}_3^ + $→H++${{\text{C}}_3}{\text{H}}_2^ + $+H中两步解离过程之间夹角α分布; (c), (d) 不同H 碎片能量条件(0—0.5 eV, 0.5—1.0 eV, 1.0—2.0 eV, 2.0—4.0 eV, 4.0—6.0 eV) 下α分布. 图中蓝色曲线为标准的正弦分布曲线, 所有曲线都在最大值处作归一化处理

    Fig. 4.  Intensity distribution of the angle α between the first dissociation and second step for sequential dissociation ${{\text{C}}_3}{\text{H}}_4^{2 + }$→H++${{\text{C}}_3}{\text{H}}_3^ + $→H++${{\text{C}}_3}{\text{H}}_2^ + $+H of (a) CH2CCH2 and (b) CH3CCH; (c), (d) the intensity distributions of the angle α for different energy region of H (0−0.5 eV, 0.5−1.0 eV, 1.0−2.0 eV, 2.0−4.0 eV, 4.0−6.0 eV). The blue lines are the standard sinusoidal distribution curves. All curves are normalized at the maximum value.

  • [1]

    Janev R K 1995 Atomic and Molecular Processes in Fusion Edge Plasmas (Boston: Springer) p3

    [2]

    Sada P V, Bjoraker G L, Jennings D E, McCabe G H, Romani P N 1998 Icarus 136 192Google Scholar

    [3]

    Xu S Y, Zhu X L, Feng W T, Guo D L, Zhao Q S, Yan S C, Zhang P J, Zhao D M, Gao Y, Zhang S F, Yang J, Ma X 2018 Phys. Rev. A 97 062701Google Scholar

    [4]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Döner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [5]

    Hsieh S, Eland J H D 1997 J. Phys. B: At. Mol. Opt. Phys. 30 4515Google Scholar

    [6]

    Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601Google Scholar

    [7]

    Yan S C, Zhu X L, Zhang P J, Ma X, Feng W T, Gao Y, Xu S Y, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [8]

    Yang H, Wang E L, Dong W X, Gong M M, Shen Z J, Tang Y G, Shan X, Chen X J 2018 Phys. Rev. A 97 052703Google Scholar

    [9]

    Wu J, Kunitski M, Schmidt L Ph H, Jahnke T, Dörner R 2012 J. Chem. Phys. 137 104308Google Scholar

    [10]

    Gong X C, Kunitski M, Ph H Schmidt L, Jahnke T, Czasch A, Dörner R, Wu J 2013 Phys. Rev. A 88 013422Google Scholar

    [11]

    Ding X Y, Haertelt M, Schlauderer S, Schuurman M, Naumov A, Villeneuve D, McKellar A, Corkum P, Staudte A 2013 Phys. Rev. Lett. 118 153001Google Scholar

    [12]

    Tielens A 2013 Rev. Mod. Phys. 85 1021Google Scholar

    [13]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [14]

    Wang E L, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711Google Scholar

    [15]

    Wang X C, Zhang Y, Lu D, Lu G C, Wei B R, Zhang B H, Tang Y J, Hutton R, Zou Y M 2014 Phys. Rev. A 90 062705Google Scholar

    [16]

    Kusakabe T, Satoh S, Tawara H, Kimura M 2001 Phys. Rev. Lett. 87 328Google Scholar

    [17]

    Scully S, Senthil V, Wyer J, Shah M, Montenegro E, Kimura M, Tawara H 2005 Phys. Rev. A 72 030701Google Scholar

    [18]

    Mebel A M, Bandrauk A D 2008 J. Chem. Phys. 129 224311Google Scholar

    [19]

    Psciuk B T, Tao P, Schlegel H B 2010 J. Phys. Chem. A 114 7653Google Scholar

    [20]

    Xu H L, Okino T, Yamanouchi K 2009 J. Chem. Phys. Chem. Phys. Lett. 469 255Google Scholar

    [21]

    Xu H L, Okino T, Yamanouchi K 2009 J. Chem. Phys. 131 1659 151102Google Scholar

    [22]

    Xu H L, Okino T, Yamanouchi K 2011 Appl. Phys. A 104 941Google Scholar

    [23]

    Okino T, Watanabe A, Xu H L, Yamanouchi K 2012 Phys. Chem. Chem. Phys. 14 4230Google Scholar

    [24]

    Okino T, Watanabe A, Xu H L, Yamanouchi K 2012 Phys. Chem. Chem. Phys. 14 10640Google Scholar

    [25]

    Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701Google Scholar

    [26]

    Ma X W, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707Google Scholar

    [27]

    Yuan H, Xu S Y, Li T T, Liu Y, Qian D B, Guo D L, Zhu X L, Ma X W 2020 Phys. Rev. A 102 062808Google Scholar

    [28]

    Li Y T, Xu S Y, Guo D L, Jia S K, Jiang X J, Zhu X L, Ma X W 2019 J. Chem. Phys. 150 144311Google Scholar

  • [1] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望. 物理学报, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [2] 王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰. 极化效应对Bohr速度能区O5+离子在低密度氢等离子体中的能损影响. 物理学报, 2023, 72(4): 043401. doi: 10.7498/aps.72.20221875
    [3] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [4] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [5] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [7] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线. 物理学报, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [8] 徐秋梅, 杨治虎, 郭义盼, 刘会平, 陈燕红, 赵红赟. 低速Xeq+(4q20)离子与Ni表面碰撞中的光辐射. 物理学报, 2018, 67(8): 083201. doi: 10.7498/aps.67.20172570
    [9] 申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅. 中能Ne4+离子诱导的羰基硫分子三体碎裂动力学分析. 物理学报, 2018, 67(4): 043401. doi: 10.7498/aps.67.20172163
    [10] 黄艳茹, 任欢, 宋见. 在动量空间讨论二氯乙烯的同分异构性. 物理学报, 2015, 64(6): 063401. doi: 10.7498/aps.64.063401
    [11] 杨兆锐, 张小安, 徐秋梅, 杨治虎. 高电荷态Krq+与Al表面碰撞发射可见光的研究. 物理学报, 2013, 62(4): 043401. doi: 10.7498/aps.62.043401
    [12] 王兴, 赵永涛, 程锐, 周贤明, 徐戈, 孙渊博, 雷瑜, 王瑜玉, 任洁茹, 虞洋, 李永峰, 张小安, 李耀宗, 梁昌慧, 肖国青. 重离子轰击Ta靶引起的多电离效应. 物理学报, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [13] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [14] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [15] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [16] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究. 物理学报, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [17] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响. 物理学报, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [18] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [19] 王瑜玉, 赵永涛, 肖国青, 房 燕, 张小安, 王铁山, 王释伟, 彭海波. 高电荷态离子207Pbq+(24≤q≤36)与Si(110)固体表面作用的电子发射研究. 物理学报, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [20] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
计量
  • 文章访问数:  2667
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-01-21
  • 上网日期:  2022-02-02
  • 刊出日期:  2022-05-05

/

返回文章
返回