搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反向旋转双色椭偏场中原子隧穿电离电子的全息干涉

黄雪飞 苏杰 廖健颖 李盈傧 黄诚

引用本文:
Citation:

反向旋转双色椭偏场中原子隧穿电离电子的全息干涉

黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚

Photoelectron holography in tunneling ionization of atoms by counter-rotating two-color elliptically polarized laser field

Huang Xue-Fei, Su Jie, Liao Jian-Ying, Li Ying-Bin, Huang Cheng
PDF
HTML
导出引用
  • 利用数值求解含时薛定谔方程和强场近似理论研究了反向旋转双色椭偏光场中氩原子隧穿电离电子的干涉. 固定两脉冲的椭偏率均为0.3, 当两椭偏场的相对相位为0.25π时, 光电子动量谱中周期内干涉、叉状全息干涉和弧形全息干涉相互重叠. 当两椭偏场的相对相位为0时, 光电子动量谱中弧形全息干涉消除, 并且周期内干涉和叉状全息干涉被彻底分离到动量谱的左右部分, 从而得到一个在空间上独立的叉状全息干涉条纹. 进一步研究表明, 通过改变两椭偏光场的椭偏率还可以增强或抑制该独立叉状全息干涉条纹. 这为干涉条纹的控制和分离提供了一个有效的手段, 同时也有利于从全息干涉条纹中提取靶材结构信息和电子超快动力学信息.
    In this paper, photoelectron interference in tunneling ionization of atoms by counter-rotating two-color elliptically polarized (TCEP) laser fields are investigated by numerically solving the two-dimensional time-dependent Schrödinger equation (TDSE) and strong field approximation (SFA). When the ellipticities of the two pulses are both 0.3, for a relative phase of 0.25π, the intracycle interference, fork-like holographic interference and arc-like holographic interference in the photoelectron momentum distribution overlap with each other. For a relative phase of 0, the arc-like holographic interference disappears and the intracycle interference and fork-like holographic interference are fully separated into the –px direction and the +px direction. Furthermore, the independent fork-like holographic interference can be enhanced or suppressed by changing the ellipticities of the two pulses. This provides an efficient tool for controlling and separating the interference structures in the photoelectron momentum distribution, which facilitates extracting the information about the target structure and the photoelectron ultrafast dynamics in strong fields.
      通信作者: 李盈傧, liyingbin2008@163.com ; 黄诚, huangcheng@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11504302, 12074329, 12004323)和河南省高等学校重点科研项目(批准号: 20A140025)资助的课题.
      Corresponding author: Li Ying-Bin, liyingbin2008@163.com ; Huang Cheng, huangcheng@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504302, 12074329, 12004323) and the Key Scientific Research Projects of Higher Education of Henan Province, China (Grant No. 20A140025).
    [1]

    Corkum P 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [2]

    Agostini P, Fabre F, Mainfray G, Petite G 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [3]

    Arbó D G, Persson E, Burgdörfer J 2006 Phys. Rev. A 74 063407Google Scholar

    [4]

    Tan J, Xu S, Han X, Zhou Y, Li M, Cao W, Zhang Q, Lu P 2021 Adv. Photonics 3 035001Google Scholar

    [5]

    Li M, Zhang P, Luo S Q, Zhou Y M, Zhang Q B, Lan P F, Lu P X 2015 Phys. Rev. A 92 063404Google Scholar

    [6]

    Yang W, Zhang H, Lin C, Xu J, Sheng Z, Song X, Hu S, Chen J 2016 Phys. Rev. A 94 043419Google Scholar

    [7]

    Wang Y, Yu S, Lai X, Kang H, Xu S, Sun R, Quan W, Liu X 2018 Phys. Rev. A 98 043422Google Scholar

    [8]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Yu, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011 Science 331 6164Google Scholar

    [9]

    Xia Q, Tao J, Cai J, Fu L, Liu J 2018 Phys. Rev. Lett. 121 143201Google Scholar

    [10]

    Du H, Li J, Wang H, Yue S, Wu H, Hu B 2017 Phys. Lett. A 381 1563Google Scholar

    [11]

    Chen F, Yao R, Luo J, Wang C 2018 Chin. Phys. B 27 103202Google Scholar

    [12]

    Marchenko T, Huismans Y, Schafer K J, Vrakking M J J 2011 Phys. Rev. A 84 053427Google Scholar

    [13]

    Bian X B, Huismans Y, Smirnova O, Yuan K J, Vrakking M J J, Bandrauk A D 2011 Phys. Rev. A 84 043420Google Scholar

    [14]

    Bian X B, Bandrauk A D, 2012 Phys. Rev. Lett. 108 263003Google Scholar

    [15]

    Song X, Lin C, Sheng Z, Liu P, Chen Z, Yang W, Hu S, Lin C D, Chen J 2016 Sci. Rep. 6 28392Google Scholar

    [16]

    林呈, 张华堂, 盛志浩, 余显环, 刘鹏, 徐竟文, 宋晓红, 胡师林, 陈京, 杨玮枫 2016 物理学报 65 223207Google Scholar

    Lin C, Zhang H J, Sheng Z H, Yu X H, Liu P, Xu J W, Song X H, Hu S L, Chen J, Yang W F 2016 Acta Phys. Sin. 65 223207Google Scholar

    [17]

    Qin P, Sun X, Liu Y, Chen Z 2021 Phys. Rev. A 104 053111Google Scholar

    [18]

    Yu S, Lai X, Wang Y, Xu S, Hua L, Quan W, Liu X 2020 Phys. Rev. A 101 023414Google Scholar

    [19]

    Zhou Y, Tolstikhin O I, Morishita T 2016 Phys. Rev. Lett. 116 173001Google Scholar

    [20]

    Hickstein D D, Ranitovic P, Witte S, Tong X M, Huismans Y, Arpin P, Zhou X, Keister K E, Hogle C W, Zhang B, Ding C, Johnsson P, Toshima N, Vrakking M J J, Murnane M M, Kapteyn H C 2012 Phys. Rev. Lett. 109 073004Google Scholar

    [21]

    Zhou Y, Tan J, Li M, Lu P 2021 Sci. China Phys. Mech. Astron. 64 273011Google Scholar

    [22]

    Meckel M, Staudte A, Patchkovskii S, Villeneuve D M, Corkum P B, Drner R, Spanner M 2014 Nat. Phys. 10 594Google Scholar

    [23]

    Liu M M, Li M, Wu C, Gong Q, Staudte A, Liu Y 2016 Phys. Rev. Lett. 116 163004Google Scholar

    [24]

    Li M, Xie H, Cao W, Luo S, Tan J, Feng Y, Du B, Zhang W, Li Y, Zhang Q, Lan P, Zhou Y, Lu P X 2019 Phys. Rev. Lett. 122 183202Google Scholar

    [25]

    Tan J, Zhou Y, He M, Chen Y, Ke Q, Liang J, Zhu X, Li M, Lu P X 2018 Phys. Rev. Lett. 121 253203Google Scholar

    [26]

    Tan J, Zhou Y, He M, Ke Q, Liang J T, Li Y, Li M, Lu P X 2019 Phys. Rev. A 99 033402Google Scholar

    [27]

    Haertelt M, Bian X B, Spanner M, Staudte A, Corkum P B 2016 Phys. Rev. Lett. 116 133001Google Scholar

    [28]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun 9 2805Google Scholar

    [29]

    He M, Li Y, Zhou Y, Li M, Cao W, Lu P 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [30]

    Walt S G, Bhargava Ram N, Atala M, Shvetsov Shilovski N I, von Conta A, Baykusheva D, Lein M, Worner H J 2017 Nat. Commun. 8 15651Google Scholar

    [31]

    Hasovic E, Becker W, Milosević D B 2016 Opt. Express 24 6413Google Scholar

    [32]

    Huang C, Pang H, Huang X, Zhong M, Wu Z 2020 Opt. Express 28 10505Google Scholar

    [33]

    Li B, Yang X, Ren X, Zhang J 2019 Opt. Express 27 32700Google Scholar

    [34]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [35]

    曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚 2021 物理学报 70 243201Google Scholar

    Zeng X, Su J, Huang X F, Pang H L, Huang C 2021 Acta Phys. Sin. 70 243201Google Scholar

    [36]

    Li M, Jiang W C, Xie H, Luo S, Zhou Y M, Lu P X 2018 Phys. Rev. A 97 023415Google Scholar

    [37]

    Ke Q H, Zhou Y M, Tan J, He M R, Liang J T, Zhao Y, Li M, Lu P X 2019 Opt. Express 27 32193Google Scholar

    [38]

    Feit M D, Fleck J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

    [39]

    Tong X M, Hino K, Toshima N 2006 Phys. Rev. A 74 031405Google Scholar

    [40]

    Liao Q, Winney A H, Lee S K, Lin Y, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [41]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148Google Scholar

    [42]

    Lewenstein M, Balcou P, Ivanov M Yu, Anne L'Huillier, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [43]

    Milošević D B, Becker W 2002 Phys. Rev. A 66 063417Google Scholar

  • 图 1  (a), (b)反向旋转TCEP复合电场(虚线)及其负矢势(实线); (c), (d)反向旋转TCEP场中Ar电离电子的末态动量分布; 其中(a), (c)相对相位为φ = 0.25π; (b), (d)相对相位φ = 0; 两椭偏场的椭偏率均为0.3

    Fig. 1.  (a), (b) Combined laser electric field E(t) (dashed curve) and the corresponding negative vector potential-A(t) (solid curve) for counter-rotating TCEP fields; (c), (d) photoelectron momentum distributions of Ar ionized by counter-rotating TCEP fields. (a), (c) The relative phase is φ = 0.25π; (b), (d) The relative phase is φ = 0. Both ellipticities of the two pulses are 0.3.

    图 2  (a) 不同时刻电离电子经典轨迹中电子离母离子距离的时间演化; (b) 反向旋转TCEP场的x分量(蓝虚线)和y分量(红虚线); (c) SFA计算所得直接电子波包A和直接电子波包B形成的干涉图样; (d) SFA计算所得前向散射电子波包A和直接电子波包A形成的干涉图样; (e) SFA计算所得前向散射电子波包A和直接电子波包B形成的干涉图样. 两椭偏场的椭偏率均为0.3. 相对相位φ = 0.25π

    Fig. 2.  (a) Time evolutions of the distances between the electron and the parent ion for different ionization times; (b) the x and y components of counter-rotating TCEP fields; (c) the simulated interference pattern between the direct electrons ionized during A and the direct electrons ionized during B with SFA; (d) the simulated interference pattern between the rescattering electrons and the direct electrons ionized during A with SFA; (e) the simulated interference pattern between the rescattering electrons ionized during A and the direct electrons ionized during B with SFA. Both ellipticities of the two pulses are 0.3. The relative phase is 0.25π.

    图 3  (a) 不同时刻电离电子经典轨迹中电子离母离子距离的时间演化; (b) 反向旋转TCEP场的x分量(蓝虚线)和y分量(红虚线); (c) SFA计算所得直接电子波包E和直接电子波包F形成的干涉图样; (d) SFA计算所得前向散射电子波包C和直接电子波包C形成的干涉图样; (e) SFA计算所得前向散射电子波包C和直接电子波包D形成的干涉图样. 两椭偏场的椭偏率均为0.3. 相对相位φ = 0

    Fig. 3.  (a) Time evolutions of the distances between the electron and the parent ion for different ionization times; (b) the x and y components of counter-rotating TCEP fields; (c) the simulated interference pattern between the direct electrons ionized during C and the direct electrons ionized during D with SFA; (d) the simulated interference pattern between the rescattering electrons and the direct electrons ionized during C with SFA; (e) the simulated interference pattern between the rescattering electrons during C and the direct electrons ionized during D with SFA. Both ellipticities of the two pulses are 0.3. The relative phase is 0.

    图 4  反向旋转TCEP场驱动Ar原子隧穿电离电子末态动量分布, 其中两椭偏场的相对相位φ = 0; 两脉冲椭偏率分别为(a) $\varepsilon_1 $ = 0.3, $\varepsilon_2 $ = 0.5; (b) $\varepsilon_1 $ = 0.3, $\varepsilon_2 $ = 0.7; (c) $\varepsilon_1 $ = 0.5, $\varepsilon_2 $ = 0.3; (d) $\varepsilon_1 $ = 0.7, $\varepsilon_2 $ = 0.3

    Fig. 4.  Photoelectron momentum distributions of Ar ionized by counter-rotating TCEP fields. The relative phase is 0. The ellipticities of the two pulses: (a) $\varepsilon_1 $ = 0.3, $\varepsilon_2 $ = 0.5; (b) $\varepsilon_1 $ = 0.3, $\varepsilon_2 $ = 0.7; (c) $\varepsilon_1 $ = 0.5, $\varepsilon_2 $ = 0.3; (d) $\varepsilon_1 $ = 0.7, $\varepsilon_2 $ = 0.3.

  • [1]

    Corkum P 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [2]

    Agostini P, Fabre F, Mainfray G, Petite G 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [3]

    Arbó D G, Persson E, Burgdörfer J 2006 Phys. Rev. A 74 063407Google Scholar

    [4]

    Tan J, Xu S, Han X, Zhou Y, Li M, Cao W, Zhang Q, Lu P 2021 Adv. Photonics 3 035001Google Scholar

    [5]

    Li M, Zhang P, Luo S Q, Zhou Y M, Zhang Q B, Lan P F, Lu P X 2015 Phys. Rev. A 92 063404Google Scholar

    [6]

    Yang W, Zhang H, Lin C, Xu J, Sheng Z, Song X, Hu S, Chen J 2016 Phys. Rev. A 94 043419Google Scholar

    [7]

    Wang Y, Yu S, Lai X, Kang H, Xu S, Sun R, Quan W, Liu X 2018 Phys. Rev. A 98 043422Google Scholar

    [8]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Yu, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011 Science 331 6164Google Scholar

    [9]

    Xia Q, Tao J, Cai J, Fu L, Liu J 2018 Phys. Rev. Lett. 121 143201Google Scholar

    [10]

    Du H, Li J, Wang H, Yue S, Wu H, Hu B 2017 Phys. Lett. A 381 1563Google Scholar

    [11]

    Chen F, Yao R, Luo J, Wang C 2018 Chin. Phys. B 27 103202Google Scholar

    [12]

    Marchenko T, Huismans Y, Schafer K J, Vrakking M J J 2011 Phys. Rev. A 84 053427Google Scholar

    [13]

    Bian X B, Huismans Y, Smirnova O, Yuan K J, Vrakking M J J, Bandrauk A D 2011 Phys. Rev. A 84 043420Google Scholar

    [14]

    Bian X B, Bandrauk A D, 2012 Phys. Rev. Lett. 108 263003Google Scholar

    [15]

    Song X, Lin C, Sheng Z, Liu P, Chen Z, Yang W, Hu S, Lin C D, Chen J 2016 Sci. Rep. 6 28392Google Scholar

    [16]

    林呈, 张华堂, 盛志浩, 余显环, 刘鹏, 徐竟文, 宋晓红, 胡师林, 陈京, 杨玮枫 2016 物理学报 65 223207Google Scholar

    Lin C, Zhang H J, Sheng Z H, Yu X H, Liu P, Xu J W, Song X H, Hu S L, Chen J, Yang W F 2016 Acta Phys. Sin. 65 223207Google Scholar

    [17]

    Qin P, Sun X, Liu Y, Chen Z 2021 Phys. Rev. A 104 053111Google Scholar

    [18]

    Yu S, Lai X, Wang Y, Xu S, Hua L, Quan W, Liu X 2020 Phys. Rev. A 101 023414Google Scholar

    [19]

    Zhou Y, Tolstikhin O I, Morishita T 2016 Phys. Rev. Lett. 116 173001Google Scholar

    [20]

    Hickstein D D, Ranitovic P, Witte S, Tong X M, Huismans Y, Arpin P, Zhou X, Keister K E, Hogle C W, Zhang B, Ding C, Johnsson P, Toshima N, Vrakking M J J, Murnane M M, Kapteyn H C 2012 Phys. Rev. Lett. 109 073004Google Scholar

    [21]

    Zhou Y, Tan J, Li M, Lu P 2021 Sci. China Phys. Mech. Astron. 64 273011Google Scholar

    [22]

    Meckel M, Staudte A, Patchkovskii S, Villeneuve D M, Corkum P B, Drner R, Spanner M 2014 Nat. Phys. 10 594Google Scholar

    [23]

    Liu M M, Li M, Wu C, Gong Q, Staudte A, Liu Y 2016 Phys. Rev. Lett. 116 163004Google Scholar

    [24]

    Li M, Xie H, Cao W, Luo S, Tan J, Feng Y, Du B, Zhang W, Li Y, Zhang Q, Lan P, Zhou Y, Lu P X 2019 Phys. Rev. Lett. 122 183202Google Scholar

    [25]

    Tan J, Zhou Y, He M, Chen Y, Ke Q, Liang J, Zhu X, Li M, Lu P X 2018 Phys. Rev. Lett. 121 253203Google Scholar

    [26]

    Tan J, Zhou Y, He M, Ke Q, Liang J T, Li Y, Li M, Lu P X 2019 Phys. Rev. A 99 033402Google Scholar

    [27]

    Haertelt M, Bian X B, Spanner M, Staudte A, Corkum P B 2016 Phys. Rev. Lett. 116 133001Google Scholar

    [28]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun 9 2805Google Scholar

    [29]

    He M, Li Y, Zhou Y, Li M, Cao W, Lu P 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [30]

    Walt S G, Bhargava Ram N, Atala M, Shvetsov Shilovski N I, von Conta A, Baykusheva D, Lein M, Worner H J 2017 Nat. Commun. 8 15651Google Scholar

    [31]

    Hasovic E, Becker W, Milosević D B 2016 Opt. Express 24 6413Google Scholar

    [32]

    Huang C, Pang H, Huang X, Zhong M, Wu Z 2020 Opt. Express 28 10505Google Scholar

    [33]

    Li B, Yang X, Ren X, Zhang J 2019 Opt. Express 27 32700Google Scholar

    [34]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [35]

    曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚 2021 物理学报 70 243201Google Scholar

    Zeng X, Su J, Huang X F, Pang H L, Huang C 2021 Acta Phys. Sin. 70 243201Google Scholar

    [36]

    Li M, Jiang W C, Xie H, Luo S, Zhou Y M, Lu P X 2018 Phys. Rev. A 97 023415Google Scholar

    [37]

    Ke Q H, Zhou Y M, Tan J, He M R, Liang J T, Zhao Y, Li M, Lu P X 2019 Opt. Express 27 32193Google Scholar

    [38]

    Feit M D, Fleck J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

    [39]

    Tong X M, Hino K, Toshima N 2006 Phys. Rev. A 74 031405Google Scholar

    [40]

    Liao Q, Winney A H, Lee S K, Lin Y, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [41]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148Google Scholar

    [42]

    Lewenstein M, Balcou P, Ivanov M Yu, Anne L'Huillier, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [43]

    Milošević D B, Becker W 2002 Phys. Rev. A 66 063417Google Scholar

  • [1] 李观荣, 郑怡婷, 徐琼怡, 裴笑山, 耿玥, 严冬, 杨红. 闭合回路相干增益原子系统中完美非互易反射光放大. 物理学报, 2024, 73(12): 126401. doi: 10.7498/aps.73.20240347
    [2] 徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛. 基于双光子干涉的量子全息理论框架. 物理学报, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [3] 车佳殷, 陈超, 李卫艳, 李维, 陈彦军. 强场原子电离响应时间的研究进展. 物理学报, 2023, 72(19): 193301. doi: 10.7498/aps.72.20230983
    [4] 赵猛, 全威, 肖智磊, 许松坡, 王志强, 王明辉, 成思进, 吴文卓, 王艳兰, 赖炫扬, 柳晓军. 强激光场驱动Ar原子电离中的隧穿延时. 物理学报, 2022, 71(23): 233203. doi: 10.7498/aps.71.20221295
    [5] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [6] 沈星晨, 刘洋, 陈淇, 吕航, 徐海峰. 超快强激光场中原子分子的里德伯态激发. 物理学报, 2022, 71(23): 233202. doi: 10.7498/aps.71.20221258
    [7] 陶建飞, 夏勤智, 廖临谷, 刘杰, 刘小井. 强激光场原子电离光电子轨迹干涉全息理论及应用. 物理学报, 2022, 71(23): 233206. doi: 10.7498/aps.71.20221296
    [8] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [9] 吴广智, 王强, 周沧涛, 傅立斌. 双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象. 物理学报, 2017, 66(7): 070301. doi: 10.7498/aps.66.070301
    [10] 林呈, 张华堂, 盛志浩, 余显环, 刘鹏, 徐竟文, 宋晓红, 胡师林, 陈京, 杨玮枫. 用推广的量子轨迹蒙特卡罗方法研究强场光电子全息. 物理学报, 2016, 65(22): 223207. doi: 10.7498/aps.65.223207
    [11] 郭丽, 韩申生, 陈京. 利用类维格纳分布函数方法研究阈上电离. 物理学报, 2016, 65(22): 223203. doi: 10.7498/aps.65.223203
    [12] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离. 物理学报, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [13] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新. 双色场控制与测量原子分子超快电子动力学过程的研究进展. 物理学报, 2016, 65(22): 223206. doi: 10.7498/aps.65.223206
    [14] 王艳海. 强场隧穿电离模式下的氦原子电离时间问题研究. 物理学报, 2016, 65(15): 153201. doi: 10.7498/aps.65.153201
    [15] 吕志忠, 张天祺, 钟功祥. 双色场诱导气体产生相干可控的四次谐波. 物理学报, 2015, 64(17): 174204. doi: 10.7498/aps.64.174204
    [16] 李春雷, 徐燕, 张燕翔, 叶宝生. 双量子阱中光子辅助电子自旋隧穿. 物理学报, 2013, 62(10): 107301. doi: 10.7498/aps.62.107301
    [17] 周青春, 狄尊燕. 声子对隧穿量子点分子辐射场系统量子相位的影响. 物理学报, 2013, 62(13): 134206. doi: 10.7498/aps.62.134206
    [18] 黄芳, 李海彬. 双势阱中玻色-爱因斯坦凝聚的绝热隧穿. 物理学报, 2011, 60(2): 020303. doi: 10.7498/aps.60.020303
    [19] 周远明, 俞国林, 高矿红, 林铁, 郭少令, 褚君浩, 戴宁. 弱耦合GaAs/AlGaAs/InGaAs双势阱隧穿结构的磁隧穿特性研究. 物理学报, 2010, 59(6): 4221-4225. doi: 10.7498/aps.59.4221
    [20] 王训春, 邱锡钧, 郑丽萍. 相对相位对双色激光场中线性多原子分子离子增强电离行为的影响. 物理学报, 2001, 50(11): 2155-2158. doi: 10.7498/aps.50.2155
计量
  • 文章访问数:  4553
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-01-14
  • 上网日期:  2022-02-02
  • 刊出日期:  2022-05-05

/

返回文章
返回