搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同向旋转双色圆偏场中非次序双电离的频率比依赖

曾雪 苏杰 黄雪飞 庞惠玲 黄诚

引用本文:
Citation:

同向旋转双色圆偏场中非次序双电离的频率比依赖

曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚

Frequency-ratio-dependent ultrafast dynamics in nonsequential double ionization by co-rotating two-color circularly polarized laser fields

Zeng Xue, Su Jie, Huang Xue-Fei, Pang Hui-Ling, Huang Cheng
PDF
HTML
导出引用
  • 利用三维经典系综模型系统研究了不同频率比的两同向旋转圆偏场中Ar原子的非次序双电离. 数值结果显示, 非次序双电离的概率随两圆偏场频率比的增加而增加. 频率比为5时非次序双电离概率比频率比为2时的概率高出一个数量级. 非次序双电离的轨道分析表明, 再碰撞轨道主要以环形的短轨道为主, 并且随着频率比的增加, 电子碰前的旅行时间缩短. 进一步分析发现, 随着频率比的增加, 碰撞激发电离机制对非次序双电离的贡献逐渐增大, 而碰撞电离机制的贡献显著减小. 这是因为对于较大的频率比, 电子的返回能量更小, 且碰撞时两电子的碰撞距离更大.
    Using a three-dimensional classical ensemble model, we investigate ultrafast dynamics in nonsequential double-ionization (NSDI) of Ar atom by co-rotating two-color circularly polarized laser fields with the frequency ratio varying between 2 and 5. Numerical results indicate that the NSDI probability gradually increases with the frequency ratio between the two components increasing. The probability for the frequency ratio 5 is one order of magnitude higher than for the frequency ratio 2. Back analysis of NSDI trajectories shows that recollision occurs mainly via a short looping trajectory. With the frequency ratio increasing, the traveling time of the free electron shortens. Furthermore, the relative contribution of recollision-induced excitation with subsequent field ionization mechanism in NSDI gradually increases as the frequency ratio increases. It is attributed to smaller recollision energy and larger recollision distance for larger frequency ratio.
      通信作者: 黄诚, huangcheng@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11504302, 61475127, 12074329, 12004323)和国家级大学生创新创业训练计划(批准号: 202010635066)资助的课题
      Corresponding author: Huang Cheng, huangcheng@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504302, 61475127, 12074329, 12004323) and the National Training Program of Innovation and Entrepreneurship for Undergraduates, China (Grant No. 202010635066)
    [1]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [2]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003Google Scholar

    [3]

    Chen Y, Zhou Y, Li Y, Li M, Lan P, Lu P 2018 Phys. Rev. A 97 013428Google Scholar

    [4]

    Liu Y, Fu L, Ye D, Liu J, Li M, Wu C, Gong Q, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [5]

    Huang C, Guo W, Zhou Y, Wu Z 2016 Phys. Rev. A 93 013416Google Scholar

    [6]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [7]

    黄诚, 钟明敏, 吴正茂 2019 物理学报 68 033201Google Scholar

    Huang C, Zhong M M, Wu Z M 2019 Acta Phys. Sin. 68 033201Google Scholar

    [8]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642Google Scholar

    [9]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658Google Scholar

    [10]

    Wang Y, Xu S, Quan W, Gong C, Lai X, Hu S, Liu M, Chen J, Liu X 2016 Phys. Rev. A 94 053412Google Scholar

    [11]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt. 58 1076Google Scholar

    [12]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar

    [13]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M, Gong Q H, Yan Z C, Wang B B 2009 J. Phys. B 42 125601Google Scholar

    [14]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001Google Scholar

    [15]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [16]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002Google Scholar

    [17]

    Chen Z J, Liang Y, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [18]

    Ye D, Li M, Fu L, Liu J, Gong Q, Liu Y, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [19]

    赵磊, 张琦, 董敬伟, 吕航, 徐海峰 2016 物理学报 65 223201Google Scholar

    Zhao L, Zhang Q, Dong J W, Lü H, Xu H F 2016 Acta Phys. Sin. 65 223201Google Scholar

    [20]

    Tan J, Xu S, Han X, Zhou Y, Li M, Cao W, Zhang Q, Lu P 2021 Adv. Photonics 3 035001Google Scholar

    [21]

    Zhou Y, Tan J, Li M, Lu P 2021 Sci. China, Ser. G 64 273011Google Scholar

    [22]

    Fleischer A, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543Google Scholar

    [23]

    Eckart S, Kunitski M, Ivanov I, Richter M, Fehre K, Hartung A, Rist J, Henrichs K, Trabert D, Schlott N, Schmidt L P H, Jahnke T, Schoffler M S, Kheifets A, Dorner R 2018 Phys. Rev. A 97 041402Google Scholar

    [24]

    Li M, Jiang W, Xie H, Luo S, Zhou Y, Lu P 2018 Phys. Rev. A 97 023415Google Scholar

    [25]

    Ke Q, Zhou Y, Tan J, He M, Liang J, Zhao Y, Li M, Lu P 2019 Opt. Express 27 32193Google Scholar

    [26]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett. 116 143005Google Scholar

    [27]

    Mancuso C A, Dorney K M, Hickstein D D, Chaloupka J L, Ellis J L, Dollar F J, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn H C, Murnane M M 2016 Phys. Rev. Lett. 117 133201Google Scholar

    [28]

    Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L P H, Schoffler M, Jahnke T, Dorner R 2016 Phys. Rev. Lett. 117 133202Google Scholar

    [29]

    Lin K, Jia X, Yu Z, He F, Ma J, Li H, Gong X, Song Q, Ji Q, Zhang W, Li H, Lu P, Zeng H, Chen J, Wu J 2017 Phys. Rev. Lett. 119 203202Google Scholar

    [30]

    Li B, Yang X, Ren X, Zhang J 2019 Opt. Express 27 32700Google Scholar

    [31]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [32]

    Huang C, Zhong M, Wu Z 2018 Opt. Express 26 26045Google Scholar

    [33]

    Ma X, Zhou Y, Chen Y, Li M, Li Y, Zhang Q, Lu P 2019 Opt. Express 27 1825Google Scholar

    [34]

    Huang C, Pang H, Huang X, Zhong M, Wu Z 2020 Opt. Express 28 10505Google Scholar

    [35]

    Pang H, Huang X, Huang C 2020 Int. J. Mod. Phys. B 34 2050304Google Scholar

    [36]

    Peng M, Bai L H, Guo Z 2021 Commun. Theor. Phys. 73 075501Google Scholar

    [37]

    Eichmann H, Egbert A, Nolte S, Momma C, Wellegehausen B 1995 Phys. Rev. A 51 R3414Google Scholar

    [38]

    Qiao Y, Wu D, Chen J, Wang J, Guo F, Yang Y 2019 Phys. Rev. A 100 063428Google Scholar

    [39]

    Huang C, Zhong M, Wu Z 2019 Opt. Express 27 7616Google Scholar

    [40]

    Chaloupka J L 2020 J. Phys. B 53 185601Google Scholar

    [41]

    Wu D, Guo F, Wang J, Chen J, Yang Y 2020 Commun. Theor. Phys. 72 055503Google Scholar

    [42]

    Haan S L, Breen L, Karim A, and Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [43]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [44]

    Li Y, Xu J, Yu B, Wang X 2020 Opt. Express 28 7341Google Scholar

    [45]

    Chen X, Ruiz C, He F, Zhang J 2020 Opt. Express 28 14884Google Scholar

    [46]

    Huang C, Zhong M, Wu Z 2018 Sci. Rep. 8 8772Google Scholar

    [47]

    Huang C, Zhong M, Wu Z 2016 J. Chem. Phys. 145 044302Google Scholar

  • 图 1  不同频率比时同向旋转双色场的电场矢量(蓝虚线)和负矢势(红实线) (a) 频率比为2; (b) 频率比为3; (c) 频率比为4; (d) 频率比为5. 箭头标出了时间演化的方向, 黑点标出了一个电场极大值及其对应的负矢势

    Fig. 1.  Combined laser electric field E(t) (dashed curves) and the corresponding negative vector potential A(t) (solid curves) for co-rotating two-color circularly polarized laser fields at different frequency ratios of (a) 2, (b) 3, (c) 4, (d) 5. The arrows indicate the time evolution direction. The black dots mark a field maximum and its negative vector potential.

    图 2  双电离与单电离的概率比对频率比的依赖

    Fig. 2.  Dependence of the ratio of double ionization probability to single ionization probability on frequency ratio.

    图 3  不同频率比时的电子动量分布 (a) 频率比为2; (b) 频率比为3; (c) 频率比为4; (d) 频率比为5

    Fig. 3.  Electron momentum distributions in the field plane at different frequency ratios of (a) 2, (b) 3, (c) 4, (d) 5.

    图 4  不同频率比时电子旅行时间的概率分布

    Fig. 4.  Distributions of electron traveling time at frequency ratios of 2, 3, 4 and 5.

    图 5  不同频率比时的再碰撞轨道 (a) 频率比为2; (b) 频率比为3; (c) 频率比为4; (d) 频率比为5

    Fig. 5.  Sample recollision trajectories at different frequency ratios of (a) 2, (b) 3, (c) 4, (d) 5.

    图 6  频率比分别为2 ((a), (b))和3 ((c), (d))时的两个长轨道 (a), (c)两电子能量的时间演化; (b), (d)两电子空间坐标演化

    Fig. 6.  Electron energies ((a), (c)) and positions in the field plane ((b), (d)) versus time for two sample long trajectories. Frequency ratios are 2 ((a), (b)) and 3 ((c), (d)), respectively.

    图 7  不同频率比时双电离延迟时间的概率分布

    Fig. 7.  Distributions of the delay time between double ionization and the recollision at frequency rations of 2, 3, 4 and 5.

    图 8  RESI和RII机制在NSDI中所占的比率对频率比的依赖

    Fig. 8.  Dependence of proportions of RESI and RII mechanism in NSDI on frequency ratio.

    图 9  频率比分别为2 ((a), (c)); 3 ((b), (d))时, RII机制((a), (b))和RESI机制((c), (d))对应的电子动量分布

    Fig. 9.  Electron momentum distributions in the field plane for RII ((a), (b)) and RESI ((c), (d)) mechanisms. Frequency ratios are 2 ((a), (c)) and 3 ((b), (d)), respectively.

    图 10  NSDI事件关于碰撞能量的概率分布

    Fig. 10.  Distributions of recollision energy at different frequency ratios of 2, 3, 4 and 5.

    图 11  NSDI事件关于碰撞距离的概率分布

    Fig. 11.  Recollison distance in NSDI at different frequency ratios.

  • [1]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [2]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003Google Scholar

    [3]

    Chen Y, Zhou Y, Li Y, Li M, Lan P, Lu P 2018 Phys. Rev. A 97 013428Google Scholar

    [4]

    Liu Y, Fu L, Ye D, Liu J, Li M, Wu C, Gong Q, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [5]

    Huang C, Guo W, Zhou Y, Wu Z 2016 Phys. Rev. A 93 013416Google Scholar

    [6]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [7]

    黄诚, 钟明敏, 吴正茂 2019 物理学报 68 033201Google Scholar

    Huang C, Zhong M M, Wu Z M 2019 Acta Phys. Sin. 68 033201Google Scholar

    [8]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642Google Scholar

    [9]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658Google Scholar

    [10]

    Wang Y, Xu S, Quan W, Gong C, Lai X, Hu S, Liu M, Chen J, Liu X 2016 Phys. Rev. A 94 053412Google Scholar

    [11]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt. 58 1076Google Scholar

    [12]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar

    [13]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M, Gong Q H, Yan Z C, Wang B B 2009 J. Phys. B 42 125601Google Scholar

    [14]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001Google Scholar

    [15]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [16]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002Google Scholar

    [17]

    Chen Z J, Liang Y, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [18]

    Ye D, Li M, Fu L, Liu J, Gong Q, Liu Y, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [19]

    赵磊, 张琦, 董敬伟, 吕航, 徐海峰 2016 物理学报 65 223201Google Scholar

    Zhao L, Zhang Q, Dong J W, Lü H, Xu H F 2016 Acta Phys. Sin. 65 223201Google Scholar

    [20]

    Tan J, Xu S, Han X, Zhou Y, Li M, Cao W, Zhang Q, Lu P 2021 Adv. Photonics 3 035001Google Scholar

    [21]

    Zhou Y, Tan J, Li M, Lu P 2021 Sci. China, Ser. G 64 273011Google Scholar

    [22]

    Fleischer A, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543Google Scholar

    [23]

    Eckart S, Kunitski M, Ivanov I, Richter M, Fehre K, Hartung A, Rist J, Henrichs K, Trabert D, Schlott N, Schmidt L P H, Jahnke T, Schoffler M S, Kheifets A, Dorner R 2018 Phys. Rev. A 97 041402Google Scholar

    [24]

    Li M, Jiang W, Xie H, Luo S, Zhou Y, Lu P 2018 Phys. Rev. A 97 023415Google Scholar

    [25]

    Ke Q, Zhou Y, Tan J, He M, Liang J, Zhao Y, Li M, Lu P 2019 Opt. Express 27 32193Google Scholar

    [26]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett. 116 143005Google Scholar

    [27]

    Mancuso C A, Dorney K M, Hickstein D D, Chaloupka J L, Ellis J L, Dollar F J, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn H C, Murnane M M 2016 Phys. Rev. Lett. 117 133201Google Scholar

    [28]

    Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L P H, Schoffler M, Jahnke T, Dorner R 2016 Phys. Rev. Lett. 117 133202Google Scholar

    [29]

    Lin K, Jia X, Yu Z, He F, Ma J, Li H, Gong X, Song Q, Ji Q, Zhang W, Li H, Lu P, Zeng H, Chen J, Wu J 2017 Phys. Rev. Lett. 119 203202Google Scholar

    [30]

    Li B, Yang X, Ren X, Zhang J 2019 Opt. Express 27 32700Google Scholar

    [31]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [32]

    Huang C, Zhong M, Wu Z 2018 Opt. Express 26 26045Google Scholar

    [33]

    Ma X, Zhou Y, Chen Y, Li M, Li Y, Zhang Q, Lu P 2019 Opt. Express 27 1825Google Scholar

    [34]

    Huang C, Pang H, Huang X, Zhong M, Wu Z 2020 Opt. Express 28 10505Google Scholar

    [35]

    Pang H, Huang X, Huang C 2020 Int. J. Mod. Phys. B 34 2050304Google Scholar

    [36]

    Peng M, Bai L H, Guo Z 2021 Commun. Theor. Phys. 73 075501Google Scholar

    [37]

    Eichmann H, Egbert A, Nolte S, Momma C, Wellegehausen B 1995 Phys. Rev. A 51 R3414Google Scholar

    [38]

    Qiao Y, Wu D, Chen J, Wang J, Guo F, Yang Y 2019 Phys. Rev. A 100 063428Google Scholar

    [39]

    Huang C, Zhong M, Wu Z 2019 Opt. Express 27 7616Google Scholar

    [40]

    Chaloupka J L 2020 J. Phys. B 53 185601Google Scholar

    [41]

    Wu D, Guo F, Wang J, Chen J, Yang Y 2020 Commun. Theor. Phys. 72 055503Google Scholar

    [42]

    Haan S L, Breen L, Karim A, and Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [43]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [44]

    Li Y, Xu J, Yu B, Wang X 2020 Opt. Express 28 7341Google Scholar

    [45]

    Chen X, Ruiz C, He F, Zhang J 2020 Opt. Express 28 14884Google Scholar

    [46]

    Huang C, Zhong M, Wu Z 2018 Sci. Rep. 8 8772Google Scholar

    [47]

    Huang C, Zhong M, Wu Z 2016 J. Chem. Phys. 145 044302Google Scholar

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离. 物理学报, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] 贺佟佟, 刘子超, 李盈傧, 黄诚. 平行偏振三色场对原子非次序双电离的调控. 物理学报, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [3] 廖健颖, 贺佟佟, 苏杰, 刘子超, 李盈傧, 余本海, 黄诚. 椭偏激光场中原子次序双电离的离子动量分布. 物理学报, 2023, 72(19): 193202. doi: 10.7498/aps.72.20230683
    [4] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离. 物理学报, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [5] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉. 物理学报, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [6] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [7] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [8] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新. 双色场控制与测量原子分子超快电子动力学过程的研究进展. 物理学报, 2016, 65(22): 223206. doi: 10.7498/aps.65.223206
    [9] 黄诚, 钟明敏, 吴正茂. 低强度周期量级脉冲驱动排列分子的非次序双电离. 物理学报, 2016, 65(8): 083301. doi: 10.7498/aps.65.083301
    [10] 吕志忠, 张天祺, 钟功祥. 双色场诱导气体产生相干可控的四次谐波. 物理学报, 2015, 64(17): 174204. doi: 10.7498/aps.64.174204
    [11] 孟健, 陈高, 刘胜男. 多周期双色场方案下附加脉冲频率对阿秒脉冲产生的影响. 物理学报, 2012, 61(20): 203202. doi: 10.7498/aps.61.203202
    [12] 童爱红, 冯国强, 邓永菊. 氦原子非次序双电离对正交双色场强度比的依赖关系. 物理学报, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [13] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [14] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [15] 辛国国, 叶地发, 赵清, 刘杰. 原子非序列双电离的多次返回碰撞电离机理分析. 物理学报, 2011, 60(9): 093204. doi: 10.7498/aps.60.093204
    [16] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系. 物理学报, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [17] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [18] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [19] 张春丽, 祁月盈, 刘学深, 丁培柱. 双色激光场中高次谐波转化效率的提高. 物理学报, 2007, 56(2): 774-780. doi: 10.7498/aps.56.774
    [20] 罗耕贤, 郭光灿. 双色场Jaynes-Cummings模型的量子理论. 物理学报, 1988, 37(12): 1956-1964. doi: 10.7498/aps.37.1956
计量
  • 文章访问数:  4283
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-07-13
  • 上网日期:  2021-08-30
  • 刊出日期:  2021-12-20

/

返回文章
返回