搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭偏激光场中原子次序双电离的离子动量分布

廖健颖 贺佟佟 苏杰 刘子超 李盈傧 余本海 黄诚

引用本文:
Citation:

椭偏激光场中原子次序双电离的离子动量分布

廖健颖, 贺佟佟, 苏杰, 刘子超, 李盈傧, 余本海, 黄诚

Ion momentum distributions from sequential double ionization of Ar in elliptically polarized laser fields

Liao Jian-Ying, He Tong-Tong, Su Jie, Liu Zi-Chao, Li Ying-Bin, Yu Ben-Hai, Huang Cheng
PDF
HTML
导出引用
  • 利用海森伯势经典系综模型, 研究了椭偏激光场中氩原子的次序双电离. 结果发现, 激光相位随机时, 随着激光波长的增加, 离子动量分布从800 nm时的六带结构逐渐转变成1600 nm时的八带结构. 激光相位固定时, 1600 nm激光场产生的离子动量分布呈现出十带结构. 这些多带结构直接反映了椭偏场中电子的亚光周期电离动力学. 随着激光相位的变化, 离子动量谱的外部三带出现显著的移动. 正是由于外部三带位置的相位依赖导致相位随机时离子动量谱的外部区域只能观测到一条带状分布. 两电子电离时序分析发现, 相位随机时, 离子动量谱中的内带源于时间差为0.5个光周期的电离脉冲组合, 而外带来源于时间差为1, 2和3个光周期的电离脉冲的组合. 对于800 nm中间的一个带, 源于时间差为1.5和2.5个光周期的电离脉冲组合; 对于1600 nm中间的两个带, 一个源于时间差为1.5个光周期的电离脉冲组合, 另一个源于时间差为2.5和3.5个光周期的电离脉冲组合. 这些结果表明长波长和相位稳定的激光更容易观测到原子次序双电离的亚光周期动力学.
    In this paper, we utilize a classical ensemble model with Heisenberg-core potential to study sequential double ionization (SDI) of Ar atom by an elliptically polarized laser field. The results show that for random laser phases, as the laser wavelength increases, the ion momentum distribution gradually evolves from a six-band structure at 800 nm to an eight-band structure at 1600 nm. When the laser phase is stable, the ion momentum distribution from 1600 nm laser field exhibits a ten-band structure. These multi-band structures directly reflect the subcycle ionization dynamics of electrons in an elliptically polarized laser field. There is a significant shift among the outer three bands of ion momentum distrbutions from different laser phases, which leads to the fact that only one band is observed in the outer region of the ion momentum distribution for the case of random laser phases. By analyzing the ionization times of the two electrons, it is found that for the case of random phases, the inner bands of the ion momentum distributions originate from those combinations of electron ionization bursts with the ionization time difference of 0.5 cycle, and the outer bands arise from those combinations of ionization bursts with the ionization time difference of 1, 2 and 3 cycles. For 800 nm, the middle band corresponds to those combinations of ionization bursts with the ionization time differences of 1.5 and 2.5 cycles. For 1600 nm, there are two bands in middle regime. One is from the combination with the ionization time difference of 1.5 cycles, and the other is from those combinations with the ionization time difference of 2.5 and 3.5 cycles. These results indicate that in the case of long wavelength and phase-stable laser, the subcycle dynamics in sequential double ionization of atoms is more likely to be observed.
      通信作者: 李盈傧, liyingbin2008@163.com ; 黄诚, huangcheng@swu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12074329, 12004323, 12104389) 、西南大学大学生创新创业训练计划(批准号: X202210635104)和信阳师范学院“南湖学者奖励计划”青年项目资助的课题.
      Corresponding author: Li Ying-Bin, liyingbin2008@163.com ; Huang Cheng, huangcheng@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074329, 12004323, 12104389), the Southwest University Training Program of Innovation and Entrepreneurship for Undergraduates, China (Grant No. X202210635104), and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University, China.
    [1]

    L’ Huillier A, Lompre L A, Mainfray G, Manus C 1982 Phys. Rev. Lett. 48 1814Google Scholar

    [2]

    Wang Y L, Xu S P, Quan W, Gong C, Lai X Y, Hu S L, Liu M Q, Chen J, Liu X J 2016 Phys. Rev. A 94 053412Google Scholar

    [3]

    Liu Y Q, Fu L B, Ye D F, Liu J, Li M, Wu C Y, Gong Q H, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [4]

    Ye D F, Li M, Fu L B, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [5]

    Lin K, Jia X Y, Yu Z Q, He F, Ma J Y, Li H, Gong X C, Song Q Y, Ji Q Y, Zhang W B, Li H X, Lu P F, Zeng H P, Chen J, Wu J 2017 Phys. Rev. Lett. 119 203202Google Scholar

    [6]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [7]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002Google Scholar

    [8]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [9]

    Li B Q, Yang X, Ren X H, Zhang J T 2019 Opt. Express 27 32700Google Scholar

    [10]

    Maharjan C M, Alnaser A S, Tong X M, Ulrich B, Ranitovic P, Ghimire S, Chang Z, Litvinyuk I V, Cocke C L 2005 Phys. Rev. A 72 041403Google Scholar

    [11]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007Google Scholar

    [12]

    Pfeiffer A N, Cirelli C, Smolarski M, Döner R, Keller U 2011 Nature Phys. 7 428Google Scholar

    [13]

    Pfeiffer A N, Cirelli C, Smolarski M, Wang X, Eberly J H, Döner R, Keller U 2011 New J. Phys. 13 093008Google Scholar

    [14]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004Google Scholar

    [15]

    Zhou Y M, Zhang Q B, Huang C, Lu P X 2012 Phys. Rev. A 86 043427Google Scholar

    [16]

    Wang X, Eberly J H 2011 arXiv: 1102.0221v1 [physics. atom-ph

    [17]

    Zhou Y M, Li M, Li Y, Tong A H, Li Q G, Lu P X 2017 Opt. Express 25 8450Google Scholar

    [18]

    Tong A H, Zhou Y M, Lu P X 2015 Opt. Express 23 15774Google Scholar

    [19]

    Schöffler M S, Xie X, Wustelt P, Moller M, Roither S, Kartashov D, Sayler A M, Baltuska A, Paulus G G, Kitzler M 2016 Phys. Rev. A 93 063421Google Scholar

    [20]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001Google Scholar

    [21]

    Chen J, Liu J, Fu L B, Zheng W M 2000 Phys. Rev. A 63 011404(RGoogle Scholar

    [22]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [23]

    Su J, Liu Z C, Liao J Y, Huang X F, Li Y B, Huang C 2022 Opt. Express 30 24898Google Scholar

    [24]

    Xu T T, Zhu Q Y, Chen J H, Ben S, Zhang J, Liu X S 2018 Opt. Express 26 1645Google Scholar

    [25]

    Li Y B, Yu B H, Tang Q B, Wang X, Hua D Y, Tong A H, Jiang C H, Ge G X, Li Y C, Wan J G 2016 Opt. Express 24 6469Google Scholar

    [26]

    苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 193201Google Scholar

    Su J, Liu Z C, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 193201Google Scholar

    [27]

    Wilets L, Henley E M, Kraft M, Mackellar A D 1977 Nucl. Phys. A 282 341Google Scholar

    [28]

    Kirschbaum C L, Wilets L 1980 Phys. Rev. A 21 834

    [29]

    Cohen J S 2006 J. Phys. B 39 1517

    [30]

    Liu S W, Ye D F, Liu J 2020 Phys. Rev. A 101 052704Google Scholar

    [31]

    Huang C, Li Z H, Zhou Y M, Tang Q B, Liao Q, Lu P X 2012 Opt. Express 20 11700Google Scholar

    [32]

    Yuan J Y, Liu S W, Wang X C, Shen Z J, Ma Y X, Ma H Y, Meng Q X, Yan T M, Zhang Y Z, Dorn A, Weidemüller M, Ye D F, Jiang Y H 2020 Phys. Rev. A 102 043112Google Scholar

    [33]

    Jiang H, He F 2021 Phys. Rev. A 104 023113Google Scholar

    [34]

    Sarkadi L 2021 Phys. Rev. A 103 053113Google Scholar

    [35]

    Lötstedt E, Kato T, Yamanouchi K 2011 Phys. Rev. Lett. 106 203001Google Scholar

  • 图 1  不同波长情况下激光偏振平面内的离子动量分布, 其中激光相位随机, 脉宽为14个光周期 (a) 800 nm; (b) 1200 nm; (c) 1600 nm.

    Fig. 1.  Ion momentum distributions in the laser polarization plane for different wavelength, where the CEP is randomly chosen for each trajectory, and the pulse duration is 14 cycles: (a) 800 nm; (b) 1200 nm; (c) 1600 nm.

    图 2  不同波长情况下沿椭圆短轴的离子动量分布, 其中分布通过对图1 px, ion∈(–0.5 a.u., 0.5 a.u.)的双电离事件积分获得, 脉宽为14个光周期 (a) 800 nm; (b) 1200 nm; (c) 1600 nm

    Fig. 2.  Ion momentum distributions along the minor elliptical axis for different wavelength, where the distribution is obtained by integrating the distributions of Fig. 1 over px, ion from –0.5 a.u. to 0.5 a.u., the pulse duration is 14 cycles: (a) 800 nm; (b) 1200 nm; (c) 1600 nm.

    图 3  相位为0时, 不同波长下激光偏振平面内的离子动量分布(a), (b)和px, ion∈(–0.5 a.u., 0.5 a.u.)的双电离事件对应的沿椭圆短轴的离子动量分布(c), (d), 其中脉宽为14个光周期 (a), (c) 800 nm; (b), (d) 1600 nm

    Fig. 3.  Ion momentum distributions in the laser polarization plane (a), (b) and ion momentum distributions along the minor elliptical axis corresponding to px, ion from –0.5 a.u. to 0.5 a.u double ionization events (c), (d) for different wavelength of the CEP is 0, where the pulse duration is 14 cycles: (a), (c) 800 nm; (b), (d) 1600 nm.

    图 4  不同波长下第1个电子 (a), (c)和第2个电子(b), (d)的电离时间分布(灰色虚线为y方向的负矢势, 激光相位为0, 脉宽为14个光周期) (a), (b) 800 nm; (c), (d) 1600 nm

    Fig. 4.  Distributions of the ionization times for the first electron (a), (c) and the second electron (b), (d) for different wavelength (The gray dashed curves represent the laser negative potential vector in y direction, the CEP is 0, the pulse duration is 14 cycles): (a), (b) 800 nm; (c), (d) 1600 nm.

    图 5  1600 nm情况下第1个电子 (a)和第2个电子 (b)的电离时间分布. 灰色虚线为y方向的负矢势, 激光相位为0.5π, 脉宽为14个光周期

    Fig. 5.  Distributions of the ionization times for the first electron (a) and the second electron (b) for the wavelength of 1600 nm. The gray dashed curves represent the laser negative potential vector in y direction, the CEP is 0.5π, the pulse duration is 14 cycles.

    图 6  不同相位情况下沿椭圆短轴的离子动量分布(脉宽为14个光周期) (a) 800 nm; (b) 1600 nm

    Fig. 6.  Ion momentum distributions along the minor elliptical axis for different CEPs (Pulse duration is 14 cycles): (a) 800 nm; (b) 1600 nm.

    图 7  1600 nm情况下两电子的电离时间分布, 激光相位为0.5π, 脉宽为14个光周期

    Fig. 7.  Ionization time distributions of the first electron versus the second electron for the wavelength of 1600 nm, the CEP is 0.5π, the pulse duration is 14 cycles.

    图 8  不同脉宽情况下激光偏振平面内的离子动量分布 (a) 6个光周期; (b) 10个光周期; (c) 14个光周期; (d) 18个光周期. 激光相位随机, 波长为1600 nm

    Fig. 8.  Ion momentum distributions in the laser polarization plane for different pulse durations: (a) 6 cycles; (b) 10 cycles; (c) 14 cycles; (d) 18 cycles. The CEP is randomly chosen for each trajectory, the laser wavelength is 1600 nm.

    图 9  考虑磁场影响时激光偏振平面内的离子动量分布, 波长为1600 nm, 脉宽为14个光周期 (a) 激光相位随机; (b) 相位为0

    Fig. 9.  Ion momentum distributions in the laser polarization plane for the wavelength of 1600 nm and the pulse duration of 14 cycles, the laser magnetic field is included: (a) CEP is random; (b) CEP is 0.

    表 1  不同电子电离脉冲组合对应的离子动量

    Table 1.  Ion momentums for different combinations of electron ionization bursts.

    波长/nm $D_3'$
    (F2, S8)
    $D_2'$
    (F2, S6)
    $D_1'$
    (F2, S4)
    $C_3'$
    (F1, S8)
    $C_2' $
    (F1, S6)
    $C_1' $
    (F1, S4)
    C1
    (F2, S3)
    C2
    (F2, S5)
    C3
    (F2, S7)
    D1
    (F1, S3)
    D2
    (F1, S5)
    D3
    (F1, S7)
    800 –6.04 –5.28 –2.18 –1.42 0.51 1.39 1.99 4.38 5.26 5.86
    1600 –12.93 –12.09 –10.57 –5.20 –4.35 –2.83 1.02 2.77 3.99 8.757 10.51 11.73
    下载: 导出CSV
  • [1]

    L’ Huillier A, Lompre L A, Mainfray G, Manus C 1982 Phys. Rev. Lett. 48 1814Google Scholar

    [2]

    Wang Y L, Xu S P, Quan W, Gong C, Lai X Y, Hu S L, Liu M Q, Chen J, Liu X J 2016 Phys. Rev. A 94 053412Google Scholar

    [3]

    Liu Y Q, Fu L B, Ye D F, Liu J, Li M, Wu C Y, Gong Q H, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [4]

    Ye D F, Li M, Fu L B, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [5]

    Lin K, Jia X Y, Yu Z Q, He F, Ma J Y, Li H, Gong X C, Song Q Y, Ji Q Y, Zhang W B, Li H X, Lu P F, Zeng H P, Chen J, Wu J 2017 Phys. Rev. Lett. 119 203202Google Scholar

    [6]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [7]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002Google Scholar

    [8]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [9]

    Li B Q, Yang X, Ren X H, Zhang J T 2019 Opt. Express 27 32700Google Scholar

    [10]

    Maharjan C M, Alnaser A S, Tong X M, Ulrich B, Ranitovic P, Ghimire S, Chang Z, Litvinyuk I V, Cocke C L 2005 Phys. Rev. A 72 041403Google Scholar

    [11]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007Google Scholar

    [12]

    Pfeiffer A N, Cirelli C, Smolarski M, Döner R, Keller U 2011 Nature Phys. 7 428Google Scholar

    [13]

    Pfeiffer A N, Cirelli C, Smolarski M, Wang X, Eberly J H, Döner R, Keller U 2011 New J. Phys. 13 093008Google Scholar

    [14]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004Google Scholar

    [15]

    Zhou Y M, Zhang Q B, Huang C, Lu P X 2012 Phys. Rev. A 86 043427Google Scholar

    [16]

    Wang X, Eberly J H 2011 arXiv: 1102.0221v1 [physics. atom-ph

    [17]

    Zhou Y M, Li M, Li Y, Tong A H, Li Q G, Lu P X 2017 Opt. Express 25 8450Google Scholar

    [18]

    Tong A H, Zhou Y M, Lu P X 2015 Opt. Express 23 15774Google Scholar

    [19]

    Schöffler M S, Xie X, Wustelt P, Moller M, Roither S, Kartashov D, Sayler A M, Baltuska A, Paulus G G, Kitzler M 2016 Phys. Rev. A 93 063421Google Scholar

    [20]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001Google Scholar

    [21]

    Chen J, Liu J, Fu L B, Zheng W M 2000 Phys. Rev. A 63 011404(RGoogle Scholar

    [22]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [23]

    Su J, Liu Z C, Liao J Y, Huang X F, Li Y B, Huang C 2022 Opt. Express 30 24898Google Scholar

    [24]

    Xu T T, Zhu Q Y, Chen J H, Ben S, Zhang J, Liu X S 2018 Opt. Express 26 1645Google Scholar

    [25]

    Li Y B, Yu B H, Tang Q B, Wang X, Hua D Y, Tong A H, Jiang C H, Ge G X, Li Y C, Wan J G 2016 Opt. Express 24 6469Google Scholar

    [26]

    苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 193201Google Scholar

    Su J, Liu Z C, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 193201Google Scholar

    [27]

    Wilets L, Henley E M, Kraft M, Mackellar A D 1977 Nucl. Phys. A 282 341Google Scholar

    [28]

    Kirschbaum C L, Wilets L 1980 Phys. Rev. A 21 834

    [29]

    Cohen J S 2006 J. Phys. B 39 1517

    [30]

    Liu S W, Ye D F, Liu J 2020 Phys. Rev. A 101 052704Google Scholar

    [31]

    Huang C, Li Z H, Zhou Y M, Tang Q B, Liao Q, Lu P X 2012 Opt. Express 20 11700Google Scholar

    [32]

    Yuan J Y, Liu S W, Wang X C, Shen Z J, Ma Y X, Ma H Y, Meng Q X, Yan T M, Zhang Y Z, Dorn A, Weidemüller M, Ye D F, Jiang Y H 2020 Phys. Rev. A 102 043112Google Scholar

    [33]

    Jiang H, He F 2021 Phys. Rev. A 104 023113Google Scholar

    [34]

    Sarkadi L 2021 Phys. Rev. A 103 053113Google Scholar

    [35]

    Lötstedt E, Kato T, Yamanouchi K 2011 Phys. Rev. Lett. 106 203001Google Scholar

  • [1] 贺佟佟, 刘子超, 李盈傧, 黄诚. 平行偏振三色场对原子非次序双电离的调控. 物理学报, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [2] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离. 物理学报, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [3] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉. 物理学报, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [4] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [5] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [6] 李想, 陈勇, 封皓, 綦磊. 声波激励下管路轴向分布双气泡动力学特性分析. 物理学报, 2020, 69(18): 184703. doi: 10.7498/aps.69.20200546
    [7] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [8] 黄诚, 钟明敏, 吴正茂. 低强度周期量级脉冲驱动排列分子的非次序双电离. 物理学报, 2016, 65(8): 083301. doi: 10.7498/aps.65.083301
    [9] 刘玉柱, Gerber Thomas, Knopp Gregor. 利用强场多光子电离技术实现对多原子分子离子振动量子态的光学操控. 物理学报, 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [10] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [11] 童爱红, 冯国强, 邓永菊. 氦原子非次序双电离对正交双色场强度比的依赖关系. 物理学报, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [12] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系. 物理学报, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [13] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [14] 王帅, 张丙云, 张运海. 热场动力学理论中的Husimi分布函数及Wehrl熵的研究. 物理学报, 2010, 59(3): 1775-1779. doi: 10.7498/aps.59.1775
    [15] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [16] 胡宏伟, 董晨钟, 师应龙. 单、双洞态镁离子的退激发及末电离态离子分布的研究. 物理学报, 2007, 56(7): 3887-3892. doi: 10.7498/aps.56.3887
    [17] 姜春蕾, 方卯发, 吴珍珍. 双纠缠原子在耗散腔场中的纠缠动力学. 物理学报, 2006, 55(9): 4647-4651. doi: 10.7498/aps.55.4647
    [18] 王训春, 邱锡钧, 郑丽萍. 相对相位对双色激光场中线性多原子分子离子增强电离行为的影响. 物理学报, 2001, 50(11): 2155-2158. doi: 10.7498/aps.50.2155
    [19] 王中结, 路轶群, 陆同兴. 冷却原子在相位调制加速驻波光场作用下动量扩散的动力学. 物理学报, 2000, 49(4): 670-673. doi: 10.7498/aps.49.670
    [20] 王中结, 路轶群, 陆同兴. 调制驻波光场中二能级原子动量扩散的动力学研究. 物理学报, 1999, 48(11): 2015-2021. doi: 10.7498/aps.48.2015
计量
  • 文章访问数:  2461
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 修回日期:  2023-08-23
  • 上网日期:  2023-08-24
  • 刊出日期:  2023-10-05

/

返回文章
返回