搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀线偏激光场驱动下原子椭偏孤立阿秒脉冲的产生

涂乔舒 张晓凡 占诗羽 秦梅艳 柯少林 廖青

引用本文:
Citation:

非均匀线偏激光场驱动下原子椭偏孤立阿秒脉冲的产生

涂乔舒, 张晓凡, 占诗羽, 秦梅艳, 柯少林, 廖青

Generation of elliptically polarized isolated attosecond pulses from atoms driven by non-uniform linearly polarized laser fields

TU Qiaoshu, ZHANG Xiaofan, ZHAN Shiyu, QIN Meiyan, KE Shaolin, LIAO Qing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 椭偏阿秒脉冲作为融合超短时间尺度(阿秒)与椭圆偏振特性的光场, 在探究物质超快手性动力学过程及X射线磁圆二色性等前沿方向具有重要应用价值. 本研究基于含时薛定谔方程的数值求解, 通过设计非均匀线偏振驱动激光场与Ne相互作用, 系统地研究了驱动激光场的非均匀度以及初始轨道的轨道角动量对孤立椭偏阿秒脉冲产生的调控规律. 本文计算了不同非均匀度的驱动激光场作用下的氖原子的高次谐波谱, 结果表明非均匀度参数的调节显著影响了高次谐波谱平滑程度以及频谱展宽程度, 进一步影响了辐射的阿秒脉冲的性质. 此外, 研究结果表明初始轨道的轨道角动量特性对脉冲偏振态起决定性作用, 当初始轨道角动量为零(如1s轨道)时, 辐射的阿秒脉冲是线偏振, 而当初始轨道角动量不为零(如环流态2p-轨道)时, 辐射的脉冲则为椭圆偏振. 该研究结果为非均匀线偏激光场驱动下原子孤立椭偏阿秒脉冲的实现及偏振特性调控提供了理论依据.
    Elliptically polarized attosecond pulse has significant applications in studying the ultrafast chiral dynamics and X-ray magnetic circular dichroism (XMCD) due to its ultrashort time-scale (attosecond) and elliptical polarization characteristics. In this work, the interaction between the non-uniform linearly polarized laser field and the Ne atoms is simulated by numerically solving the time-dependent Schrödinger equation. Specifically, the influences of the non-uniformity of the driving field and the orbital angular momentum (OAM) of the initial orbital on high-order harmonics (HHs) and attosecond pulses are revealed. HHs generated by the linearly polarized laser fields with different non-uniformities are calculated. The results indicate that the non-uniformity significantly influences the smoothness and spectral broadening of the harmonic spectra, consequently affecting the properties of the attosecond pulses. Moreover, our findings also reveal that the OAM of the initial orbital plays a significant role in the polarization state of the attosecond pulses. When the OAM is zero (e.g., 1s orbital), the radiated attosecond pulses are linearly polarized, whereas non-zero OAM (e.g., current carrying state 2p- orbital) leads to elliptically polarized emission. This study provides a theoretical foundation for generating and controlling elliptically polarized isolated attosecond pulses by using non-uniform linearly polarized laser fields, and offers new possibilities for ultrafast spectroscopy and magnetic material characterization.
  • 图 1  (a) 1s轨道概率密度空间分布图; (b) 1s轨道相位空间分布图; (c) 2p-轨道概率密度空间分布图; (d) 2p-轨道相位空间分布图

    Fig. 1.  (a) Probability density space distribution graph of the 1s orbital; (b) phase space distribution diagram of the 1s orbital; (c) probability density space distribution graph of the 2p- orbital; (d) phase space distribution diagram of the 2p- orbital.

    图 2  不同$ \kappa $值驱动场下1s轨道和2p-轨道产生的高次谐波谱 (a) $ \kappa $ = 0, 1s轨道; (b) $ \kappa $ = 0.001, 1s轨道; (c) $ \kappa $ = 0.002, 1s轨道; (d) $ \kappa $ = 0.003, 1s轨道; (e) $ \kappa $ = 0, 2p-轨道; (f) $ \kappa $ = 0.001, 2p-轨道; (g) $ \kappa $ = 0.002, 2p-轨道; (h) $ \kappa $ = 0.003, 2p-轨道 (蓝色实线和红色虚线分别表示高次谐波的右、左旋分量)

    Fig. 2.  High-order harmonic spectra generated by 1s and 2p- orbitals under different $ \kappa $ value of driving fields: (a) $ \kappa $ = 0, 1s orbital; (b) $ \kappa $ = 0.001, 1s orbital; (c) $ \kappa $ = 0.002, 1s orbital; (d) $ \kappa $ = 0.003, 1s orbital; (e) $ \kappa $ = 0, 2p- orbital; (f) $ \kappa $ = 0.001, 2p- orbital; (g) $ \kappa $ = 0.002, 2p- orbital; (h) $ \kappa $ = 0.003, 2p- orbital (Blue solid line and the red dashed line, respectively, represent the left- and right-handed circular components of the higher-order harmonics.).

    图 3  高次谐波的时频分析图 (a) $ \kappa $ = 0, 1s轨道; (b) $ \kappa $ = 0.001, 1s轨道; (c) $ \kappa $ = 0.002, 1s轨道; (d) $ \kappa $ = 0.003, 1s轨道; (e) $ \kappa $ = 0, 2p-轨道; (f) $ \kappa $ = 0.001, 2p-轨道; (g) $ \kappa $ = 0.002, 2p-轨道; (h) $ \kappa $ = 0.003, 2p-轨道

    Fig. 3.  Time-frequency analysis diagram of high-order harmonics: (a) $ \kappa $ = 0, 1s orbital; (b) $ \kappa $ = 0.001, 1s orbital; (c) $ \kappa $ = 0.002, 1s orbital; (d) $ \kappa $ = 0.003, 1s orbital; (e) $ \kappa $ = 0, 2p- orbital; (f) $ \kappa $ = 0.001, 2p- orbital; (g) $ \kappa $ = 0.002, 2p- orbital; (h) $ \kappa $ = 0.003, 2p- orbital.

    图 4  高次谐波椭偏率 (a) $ \kappa $ = 0, 1s轨道; (b) $ \kappa $ = 0.001, 1s轨道; (c) $ \kappa $ = 0.002, 1s轨道; (d) $ \kappa $ = 0.003, 1s轨道; (e) $ \kappa $ = 0, 2p-轨道; (f) $ \kappa $ = 0.001, 2p-轨道; (g) $ \kappa $ = 0.002, 2p-轨道; (h) $ \kappa $ = 0.003, 2p-轨道

    Fig. 4.  Ellipticity of high harmonics: (a) $ \kappa $ = 0, 1s orbital; (b) $ \kappa $ = 0.001, 1s orbital; (c) $ \kappa $ = 0.002, 1s orbital; (d) $ \kappa $ = 0.003, 1s orbital; (e) $ \kappa $ = 0, 2p- orbital; (f) $ \kappa $ = 0.001, 2p- orbital; (g) $ \kappa $ = 0.002, 2p- orbital; (h) $ \kappa $ = 0.003, 2p- orbital.

    图 5  高次谐波的时频分析图 (a) $ \kappa $ = 0.001, 1s轨道x分量; (b) $ \kappa $ = 0.001, 2p-轨道x分量; (c) $ \kappa $ = 0.001, 1s轨道y分量; (d) $ \kappa $ = 0.001, 2p-轨道y分量

    Fig. 5.  Time-frequency analysis diagram of high-order harmonics: (a) $ \kappa $ = 0.001, x component of 1s orbital; (b) $ \kappa $ = 0.001, x component of 2p- orbital; (c) $ \kappa $ = 0.001, y component of 1s orbital; (d) $ \kappa $ = 0.001, y component of 2p- orbital.

    图 6  阿秒脉冲时域包络 (a) $ \kappa $ = 0, 1s轨道; (b) $ \kappa $ = 0.001, 1s轨道; (c) $ \kappa $ = 0.002, 1s轨道; (d) $ \kappa $ = 0.003, 1s轨道; (e) $ \kappa $ = 0, 2p-轨道; (f) $ \kappa $ = 0.001, 2p-轨道; (g) $ \kappa $ = 0.002, 2p-轨道; (h) $ \kappa $ = 0.003, 2p-轨道

    Fig. 6.  Time-domain envelope of attosecond pulses: (a) $ \kappa $ = 0, 1s orbital; (b) $ \kappa $ = 0.001, 1s orbital; (c) $ \kappa $ = 0.002, 1s orbital; (d) $ \kappa $ = 0.003, 1s orbital; (e) $ \kappa $ = 0, 2p- orbital; (f) $ \kappa $ = 0.001, 2p- orbital; (g) $ \kappa $ = 0.002, 2p- orbital; (h) $ \kappa $ = 0.003, 2p- orbital.

    图 7  阿秒脉冲时域电场形式 (a) $ \kappa $ = 0, 1s轨道; (b) $ \kappa $ = 0.001, 1s轨道; (c) $ \kappa $ = 0.002, 1s轨道; (d) $ \kappa $ = 0.003, 1s轨道; (e) $ \kappa $ = 0, 2p-轨道; (f) $ \kappa $ = 0.001, 2p-轨道; (g) $ \kappa $ = 0.002, 2p-轨道; (h) $ \kappa $ = 0.003, 2p-轨道

    Fig. 7.  Time-domain electric field forms of attosecond pulses: (a) $ \kappa $ = 0, 1s orbital; (b) $ \kappa $ = 0.001, 1s orbital; (c) $ \kappa $ = 0.002, 1s orbital; (d) $ \kappa $ = 0.003, 1s orbital; (e) $ \kappa $ = 0, 2p- orbital; (f) $ \kappa $ = 0.001, 2p- orbital; (g) $ \kappa $ = 0.002, 2p- orbital; (h) $ \kappa $ = 0.003, 2p- orbital.

    图 8  (a)—(c) 2p-轨道高次谐波截止区能量、合成的阿秒脉冲脉宽以及椭偏率随驱动激光场波长的变化; (d)—(f) 驱动激光场光周期为$ {2 T}_{0} $时的高次谐波谱、合成的阿秒脉冲以及时域电场(红色实线表示光周期为$ {3 T}_{0} $的结果), 合成的高次谐波谱段均为35阶—50阶. 其余参数与图2(h)相同

    Fig. 8.  (a)–(c) Cut-off energy of high harmonic spectra of the 2p- orbital, pulse duration and ellipticity versus the wavelength; (d)–(f) the high harmonic spectra, attosecond pulses and time-domain electric field for the driving field with $ {2 T}_{0} $ (The red solid lines represent the results for the driving field with $ {3 T}_{0} $). The attosecond pulses synthesized by the harmonics of 35th–40th. Other parameters are the same as those in Fig. 2(h).

  • [1]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar

    [2]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [3]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [4]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri D S, Nisoli M 2006 Science 314 443Google Scholar

    [5]

    Seres J, Yakovlev S V, Seres E, Streli CH, Wobrauschek P, Spielmann C H, Krausz F 2007 Nat. Phys. 3 878Google Scholar

    [6]

    Goulielmakis E, Schultze M, Hofstetter M 2008 Science 320 1614Google Scholar

    [7]

    Mairesse Y, Bohan D A, Frasinski J K, Dinu C L, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller G H, Agostini P, Salières P 2003 Science 302 1540Google Scholar

    [8]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186

    [9]

    Kukk E, Myllynen H, Nagaya K, Wada S, Bozek D J, Takanashi T, You D Niozu A, Kooser K, Gaumnitz T, Pelimanni E, Berholts M, Granroth S, Yokono N, Fukuzawa H, Miron C, Ueda K 2019 Phys. Rev. A 99 023411Google Scholar

    [10]

    Mairesse Y, Higuet J, Dudovich N, Shafir D, Fabre B, Mével E, Constant E, Patchkovskii S, Walters Z, Ivanov Y M, Smirnova O 2010 Phys. Rev. Lett. 104 22901

    [11]

    Chen Z J, Wang Y, Morishita T 2019 Phys. Rev. A 100 023405Google Scholar

    [12]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [13]

    Ferré A, Handschin C, Dumergue M, Burgy F, Comby A, Descamps D, Fabre B, Garcia A G, Géneaux R, Merceron L, Mével E, Nahon L, Petit S, Pons B, Staedter D, Weber S, Ruchon T, Blanchet V, Mairesse Y 2014 Nat. Photonics 9 93

    [14]

    Kfir O, Grychto P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw M J, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photonics 9 99

    [15]

    Sinev I, Richter U F, Toftul I, Glebov N, Koshelev K, Hwang Y, Lancaster G D, Kivshar Y, Altug H 2025 Nat. Commun. 16 6091Google Scholar

    [16]

    Valev K V, Engheta N, Pendry B J 2023 Adv. Mater. 35 e2306073Google Scholar

    [17]

    Shao R, Zhai C, Zhang Y, Sun N, Cao W, Lan P, Lu P 2020 Opt. Express 28 15874Google Scholar

    [18]

    Lambert G, Vodungbo B, Gautier J, Mahieu B, Malka V, Sebban S, Zeitoun P, Luning J, Perron J, Andreev A, Stremoukhov S, Ardana-Lamas F, Dax A, Hauri P C, Sardinha A, Fajardo M 2015 Nat. Commun. 6 6167Google Scholar

    [19]

    Yuan J K, Bandrauk D A 2013 Phys. Rev. Lett. 110 023003Google Scholar

    [20]

    Fleischer A, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543

    [21]

    Medišauskas L, Wragg J, van der Hart H, Yu. Ivanov M 2015 Phys. Rev. Lett. 115 153001Google Scholar

    [22]

    Zhou X, Lock R, Wagner N, Li W, Kapteyn C H, Murnane M M 2009 Phys. Rev. Lett. 102 073902Google Scholar

    [23]

    Niikura H, Dudovich N, Villeneuve M D, Corkum B P 2010 Phys Rev. Lett. 105 053003Google Scholar

    [24]

    Le A, Lucchese R R, Lin D C 2010 Phys. Rev. A 82 023814Google Scholar

    [25]

    Xie X, Scrinzi A, Wickenhauser M, Baltuška A, Barth I, Kitzler M 2008 Phys. Rev. Lett. 101 033901Google Scholar

    [26]

    Kfir O, Grychtol P, Turgut E 2015 Nat. Photonics 9 99Google Scholar

    [27]

    Weber A, Böning B, Minneker B, Fritzsche S 2021 Phys. Rev. A 104 063118Google Scholar

    [28]

    Liu X, Zhu X, Li L, Li Y, Zhang Q, Lan P, Lu P 2016 Phys. Rev. A 94 033410Google Scholar

    [29]

    Miloševic B D 2015 Phys. Rev. A 92 043827Google Scholar

    [30]

    Mauger F, Bandrauk D A, Uzer T 2016 J. Phys. B 49 10LT01Google Scholar

    [31]

    Hickstein D D, Dollar J F, Grychtol P, Ellis L J, Knut R, Hernández-García C, Zusin D, Gentry C, Shaw M J, Fan T, Dorney M K, Becker A, Jaron´-Becker A, Kapteyn C H, Murnane M M, Durfee G C 2015 Nat. Photonics 9 743Google Scholar

    [32]

    Dorney M K, Ellis L J, Hernández-García C, Hickstein D D, Mancuso A C, Brooks N, Fan T, Fan G, Zusin D, Gentry C, Grychtol P, Kapteyn C H, Murnane M M 2017 Phys. Rev. Lett. 119 063201Google Scholar

    [33]

    Zhang X, Li L, Zhu X, Liu K, Liu X, Wang D, Lan P, Barth I, Lu P 2018 Phys. Rev. A 98 023418Google Scholar

    [34]

    Le A T, Lucchese R R, Lin C D 2010 Phys. Rev. A 82 023814Google Scholar

    [35]

    Zhang X F, Zhu X S, Liu X, Wang F, Qin M Y, Liao Q, Lu P X 2020 Phys. Rev. A 102 033103Google Scholar

    [36]

    Ou T, Wang F, Yuan H, Yang C, Song J, Liao Q 2025 Opt. Commun. 574 131183Google Scholar

    [37]

    Mandal A, Singh P K 2023 Laser Phys. 33 015301Google Scholar

    [38]

    Ammosov M V, Delone N B, Krainov V P, 1986 Sov. Phys. JETP 64 1191

    [39]

    Ding Y, Wang K, Zhang X 2025 Opt. Laser Technol. 184 112561Google Scholar

    [40]

    Zhang X, Li L, Zhu X, Liu K, Liu X, Wang D, Lan P, Barth I, Lu P 2018 Phys. Rev. A 98 023418Google Scholar

    [41]

    Luo J H 2014 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [42]

    Zhang X F, Zhu X S, Liu X, Wang D, Zhang Q B, Lan P F, Lu P X 2017 Opt. Lett. 42 1027Google Scholar

  • [1] 邓意民, 张煜, 陆培祥, 曹伟. 基于水窗高次谐波阿秒光源的瞬态吸收光谱装置. 物理学报, doi: 10.7498/aps.74.20250550
    [2] 于术娟, 刘竹琴, 李雁鹏. 对称分子${\text{H}}_{\text{2}}^{\text{ + }}$在强短波激光场中高次谐波椭偏率性质的研究. 物理学报, doi: 10.7498/aps.72.20221946
    [3] 杜进旭, 王国利, 李小勇, 周效信. 优化双色近红外激光及其二次谐波场驱动原子产生孤立阿秒脉冲. 物理学报, doi: 10.7498/aps.71.20221375
    [4] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, doi: 10.7498/aps.71.20221298
    [5] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, doi: 10.7498/aps.70.20210339
    [6] 刘阳阳, 赵昆, 何鹏, 江昱佼, 黄杭东, 滕浩, 魏志义. 基于固体薄片超连续飞秒光源驱动的高次谐波产生实验. 物理学报, doi: 10.7498/aps.66.134207
    [7] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强. 物理学报, doi: 10.7498/aps.65.123201
    [8] 李贵花, 谢红强, 姚金平, 储蔚, 程亚, 柳晓军, 陈京, 谢新华. 中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究. 物理学报, doi: 10.7498/aps.65.224208
    [9] 罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深. 空间非均匀啁啾双色场驱动下氦离子的高次谐波以及孤立阿秒脉冲的产生. 物理学报, doi: 10.7498/aps.64.193201
    [10] 李小刚, 李芳, 何志聪. 双色场驱动下高次谐波的径向量子轨道干涉. 物理学报, doi: 10.7498/aps.62.087201
    [11] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, doi: 10.7498/aps.62.024212
    [12] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, doi: 10.7498/aps.60.054210
    [13] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, doi: 10.7498/aps.60.033203
    [14] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟. 物理学报, doi: 10.7498/aps.59.317
    [15] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, doi: 10.7498/aps.58.7633
    [16] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟. 物理学报, doi: 10.7498/aps.55.2972
    [17] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟. 物理学报, doi: 10.7498/aps.55.4691
    [18] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, doi: 10.7498/aps.53.2316
    [19] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, doi: 10.7498/aps.53.2180
    [20] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究. 物理学报, doi: 10.7498/aps.51.2034
计量
  • 文章访问数:  569
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-17
  • 修回日期:  2025-08-10
  • 上网日期:  2025-08-26

/

返回文章
返回