搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究

李贵花 谢红强 姚金平 储蔚 程亚 柳晓军 陈京 谢新华

引用本文:
Citation:

中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究

李贵花, 谢红强, 姚金平, 储蔚, 程亚, 柳晓军, 陈京, 谢新华

Signature of multi-channel interference in high-order harmonic generation from N2 driven by intense mid-infrared pulses

Li Gui-Hua, Xie Hong-Qiang, Yao Jin-Ping, Chu Wei, Cheng Ya, Liu Xiao-Jun, Chen Jing, Xie Xin-Hua
PDF
导出引用
  • 通过系统研究氮分子高次谐波产生过程中的电子超快动力学过程,实验上发现在中红外飞秒强激光场驱动下高次谐波谱的截止区附近存在清晰的谐波谱极小值.进一步研究表明谐波谱极小值对应的光子能量强烈依赖于驱动激光脉冲的光强和波长,而与分子取向角无关,由此推断该极小值来源于氮分子最高占据分子轨道和次最高占据分子轨道产生的高次谐波之间的相消干涉.本研究结果将对极端强场条件下多轨道电子超快动力学研究起到积极推动作用.
    Recently, three major types of minima (i.e., Cooper-like minimum, two-center interference minimum and multi-channel interference minimum) have been observed in high-order harmonic generation (HHG) spectra. Identification of the origin of the minimum in a HHG spectrum is critical for self-probing of the molecular structures and dynamics, which has been an important subject in attosecond physics. In this paper, we report the investigation of the multi-electron dynamics in HHG from N2 molecules driven by intense mid-infrared laser pulses. Based on a pump-probe experimental setup, clear spectral minima in the cutoff region of high harmonic spectra from N2 molecules are observed in measurements with mid-infrared laser pulses at three wavelengths (i.e., 1300, 1400 and 1500 nm). A systematic investigation has been carried out for clarifying the origin of these minima. We carefully measured the spectral minima under three different experimental conditions:1) different alignment angles of molecules; 2) various peak laser intensities; 3) tunable driving laser wavelengths. Experimental results show that the positions of the spectral minima do not depend on the alignment angles of molecules. In addition, the measured spectral minima shift almost linearly with the laser intensity for all three wavelengths, and the positions of the spectral minima strongly depend on the wavelengths of the driven field. These findings are in conflict with the Cooper-like and two-center interference minima predictions, providing strong evidences on the dynamic multi-channel interference origin of these minima. Besides, we theoretically calculated the positions of multi-channel interference minima by using a classical three-step model and found out perfect agreements between the experimental results and theoretical calculations, which again strongly support the multi-channel interference picture. Moreover, the advantages of the observed dynamic multi-channel interference based on HHG driven by long wavelength lasers are discussed. The long wavelength driver lasers are attractive for not only generating coherent XUV radiation and attosecond pulses, but also investigating structures and dynamics of molecules in strong laser fields.
      通信作者: 程亚, ya.cheng@siom.ac.cn
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号:2014CB921300,2013CB922201)、国家自然科学基金(批准号:11127901,11134010,61575211,11304330,11404357,61405220,11274050,11334009,61605227)和上海市扬帆计划(批准号:14YF1406100,16YF1412700)资助的课题.
      Corresponding author: Cheng Ya, ya.cheng@siom.ac.cn
    • Funds: Project supported by National Basic Research Program of China (Grant Nos. 2014CB921300, 2013CB922201), the National Natural Science Foundation of China (Grant Nos. 11127901, 11134010, 61575211, 11304330, 11404357, 61405220, 11274050, 11334009, 61605227), and the Shanghai Sailing Program, China (Grant Nos. 14YF1406100, 16YF1412700).
    [1]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987J. Opt. Soc. Am. B 4 595

    [2]

    Chen Z Y, Pukhov A 2016Nat. Commun. 7 12515

    [3]

    Corkum P 1993Phys. Rev. Lett. 71 1994

    [4]

    Santra R, Gordon A 2006Phys. Rev. Lett. 96 073906

    [5]

    Gibson E A, Paul A, Wagner N, Tobey R, Gaudiosi D, Backus S, Christov I P, Aquila A, Gullikson E M, Attwood D T, Murnane M M, Kapteyn H C 2003Science 302 95

    [6]

    Corkum P B, Burnett N H, Ivanov M Y 1994Opt. Lett. 19 1870

    [7]

    Zeng B, Chu W, Li G, Yao J, Ni J, Zhang H, Cheng Y, Xu Z, Wu Y, Chang Z 2012Phys. Rev. A 85 033839

    [8]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004Nature 432 867

    [9]

    Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carre B, Taieb R, Salieres P 2010Nat. Phys. 6 200

    [10]

    Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S, Stagira S 2011Nat. Phys. 7 822

    [11]

    Uiberacker M, Uphues T, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schroder H, Lezius M, Kompa K L, Muller H G, Vrakking M J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007Nature 446 627

    [12]

    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov M Y 2009Nature 460 972

    [13]

    Dudovich N, Smirnova O, Levesque J, Mairesse Y, Ivanov M Y, Villeneuve D M, Corkum P B 2006Nat. Phys. 2 781

    [14]

    Xu H, Xiong H, Zeng B, Chu W, Fu Y, Yao J, Chen J, Liu X, Cheng Y, Xu Z 2010Opt. Lett. 35 472

    [15]

    Li W, Zhou X, Lock R, Patchkovskii S, Stolow A, Kapteyn H C, Murnane M M 2008Science 322 1207

    [16]

    McFarland B K, Farrell J P, Bucksbaum P H, Ghr M 2008Science 322 1232

    [17]

    Yao J, Li G, Jia X, Hao X, Zeng B, Jing C, Chu W, Ni J, Zhang H, Xie H, Zhang C, Zhao Z, Chen J, Liu X, Cheng Y, Xu Z 2013Phys. Rev. Lett. 111 133001

    [18]

    Wörner H J, Bertrand J B, Hockett P, Corkum P B, Villeneuve D M 2010Phys. Rev. Lett. 104 233904

    [19]

    Torres R, Siegel T, Brugnera L, Procino I, Underwood J G, Altucci C, Velotta R, Springate E, Froud C, Turcu I C E, Patchkovskii S, Ivanov M Y, Smirnova O, Marangos J P 2010Phys. Rev. A 81 051802

    [20]

    Bertrand J B, Wörner H J, Hockett P, Villeneuve D M, Corkum P B 2012Phys. Rev. Lett. 109 143001

    [21]

    Higuet J, Ruf H, Thiré N, Cireasa R, Constant E, Cormier E, Descamps D, Mével E, Petit S, Pons B, Mairesse Y, Fabre B 2011Phys. Rev. A 83 053401

    [22]

    Wahlström C G, Larsson J, Persson A, Starczewski T, Svanberg S, Salières P, Balcou P, L'Huillier A 1993Phys. Rev. A 48 4709

    [23]

    Lein M, Hay N, Velotta R, Marangos J, Knight P 2002Phys. Rev. Lett. 88 183903

    [24]

    Lein M, Hay N, Velotta R, Marangos J, Knight P 2002Phys. Rev. A 66 023805

    [25]

    Le A T, Tong X M, Lin C 2006Phys. Rev. A 73 041402

    [26]

    Kanai T, Minemoto S, Sakai H 2005Nature 435 470

    [27]

    Kato K, Minemoto S, Sakai H 2011Phys. Rev. A 84 021403

    [28]

    Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J, Altucci C, Velotta R 2005Phys. Rev. Lett. 95 153902

    [29]

    Diveki Z, Camper A, Haessler S, Auguste T, Ruchon T, Carré B, Salières P, Guichard R, Caillat J, Maquet A, Taïeb R 2012New J. Phys. 14 023062

    [30]

    Krause J, Schafer K, Kulander K 1992Phys. Rev. Lett. 68 3535

    [31]

    Xiong H, Xu H, Fu Y, Yao J, Zeng B, Chu W, Cheng Y, Xu Z, Takahashi E J, Midorikawa K, Liu X, Chen J 2009Opt. Lett. 34 1747

    [32]

    Xu H, Xiong H, Zeng Z, Fu Y, Yao J, Li R, Cheng Y, Xu Z 2008Phys. Rev. A 78 033841

    [33]

    Ni J, Yao J, Zeng B, Chu W, Li G, Zhang H, Jing C, Chin S L, Cheng Y, Xu Z 2011Phys. Rev. A 84 063846

    [34]

    Antoine P, L'Huillier A, Lewenstein M 1996Phys. Rev. Lett. 77 1234

    [35]

    Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009PNAS 106 10516

    [36]

    Popmintchev T, Chen M C, Cohen O, Grisham M E, Rocca J J, Murnane M M, Kapteyn H C 2008Opt. Lett. 33 2128

    [37]

    Cirmi G, Lai C J, Granados E, Huang S W, Sell A, Hong K H, Moses J, Keathley P, Kärtner F X 2012J. Phys. B:At. Mol. Opt. Phys. 45 205601

    [38]

    Chen M C, Arpin P, Popmintchev T, Gerrity M, Zhang B, Seaberg M, Popmintchev D, Murnane M M, Kapteyn H C 2010Phys. Rev. Lett. 105 173901

    [39]

    Seideman T 1995J. Chem. Phys. 103 7887

    [40]

    Ortigoso J, Rodríguez M, Gupta M, Friedrich B 1999J. Chem. Phys. 110 3870

    [41]

    Kanai T, Takahashi E, Nabekawa Y, Midorikawa K 2007Phys. Rev. Lett. 98 153904

    [42]

    Lewenstein M, Salières P, L'Huillier A 1995Phys. Rev. A 52 4747

    [43]

    Keldysh L V 1965Sov. Phys. JETP 20 1307

  • [1]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987J. Opt. Soc. Am. B 4 595

    [2]

    Chen Z Y, Pukhov A 2016Nat. Commun. 7 12515

    [3]

    Corkum P 1993Phys. Rev. Lett. 71 1994

    [4]

    Santra R, Gordon A 2006Phys. Rev. Lett. 96 073906

    [5]

    Gibson E A, Paul A, Wagner N, Tobey R, Gaudiosi D, Backus S, Christov I P, Aquila A, Gullikson E M, Attwood D T, Murnane M M, Kapteyn H C 2003Science 302 95

    [6]

    Corkum P B, Burnett N H, Ivanov M Y 1994Opt. Lett. 19 1870

    [7]

    Zeng B, Chu W, Li G, Yao J, Ni J, Zhang H, Cheng Y, Xu Z, Wu Y, Chang Z 2012Phys. Rev. A 85 033839

    [8]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004Nature 432 867

    [9]

    Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carre B, Taieb R, Salieres P 2010Nat. Phys. 6 200

    [10]

    Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S, Stagira S 2011Nat. Phys. 7 822

    [11]

    Uiberacker M, Uphues T, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schroder H, Lezius M, Kompa K L, Muller H G, Vrakking M J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007Nature 446 627

    [12]

    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov M Y 2009Nature 460 972

    [13]

    Dudovich N, Smirnova O, Levesque J, Mairesse Y, Ivanov M Y, Villeneuve D M, Corkum P B 2006Nat. Phys. 2 781

    [14]

    Xu H, Xiong H, Zeng B, Chu W, Fu Y, Yao J, Chen J, Liu X, Cheng Y, Xu Z 2010Opt. Lett. 35 472

    [15]

    Li W, Zhou X, Lock R, Patchkovskii S, Stolow A, Kapteyn H C, Murnane M M 2008Science 322 1207

    [16]

    McFarland B K, Farrell J P, Bucksbaum P H, Ghr M 2008Science 322 1232

    [17]

    Yao J, Li G, Jia X, Hao X, Zeng B, Jing C, Chu W, Ni J, Zhang H, Xie H, Zhang C, Zhao Z, Chen J, Liu X, Cheng Y, Xu Z 2013Phys. Rev. Lett. 111 133001

    [18]

    Wörner H J, Bertrand J B, Hockett P, Corkum P B, Villeneuve D M 2010Phys. Rev. Lett. 104 233904

    [19]

    Torres R, Siegel T, Brugnera L, Procino I, Underwood J G, Altucci C, Velotta R, Springate E, Froud C, Turcu I C E, Patchkovskii S, Ivanov M Y, Smirnova O, Marangos J P 2010Phys. Rev. A 81 051802

    [20]

    Bertrand J B, Wörner H J, Hockett P, Villeneuve D M, Corkum P B 2012Phys. Rev. Lett. 109 143001

    [21]

    Higuet J, Ruf H, Thiré N, Cireasa R, Constant E, Cormier E, Descamps D, Mével E, Petit S, Pons B, Mairesse Y, Fabre B 2011Phys. Rev. A 83 053401

    [22]

    Wahlström C G, Larsson J, Persson A, Starczewski T, Svanberg S, Salières P, Balcou P, L'Huillier A 1993Phys. Rev. A 48 4709

    [23]

    Lein M, Hay N, Velotta R, Marangos J, Knight P 2002Phys. Rev. Lett. 88 183903

    [24]

    Lein M, Hay N, Velotta R, Marangos J, Knight P 2002Phys. Rev. A 66 023805

    [25]

    Le A T, Tong X M, Lin C 2006Phys. Rev. A 73 041402

    [26]

    Kanai T, Minemoto S, Sakai H 2005Nature 435 470

    [27]

    Kato K, Minemoto S, Sakai H 2011Phys. Rev. A 84 021403

    [28]

    Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J, Altucci C, Velotta R 2005Phys. Rev. Lett. 95 153902

    [29]

    Diveki Z, Camper A, Haessler S, Auguste T, Ruchon T, Carré B, Salières P, Guichard R, Caillat J, Maquet A, Taïeb R 2012New J. Phys. 14 023062

    [30]

    Krause J, Schafer K, Kulander K 1992Phys. Rev. Lett. 68 3535

    [31]

    Xiong H, Xu H, Fu Y, Yao J, Zeng B, Chu W, Cheng Y, Xu Z, Takahashi E J, Midorikawa K, Liu X, Chen J 2009Opt. Lett. 34 1747

    [32]

    Xu H, Xiong H, Zeng Z, Fu Y, Yao J, Li R, Cheng Y, Xu Z 2008Phys. Rev. A 78 033841

    [33]

    Ni J, Yao J, Zeng B, Chu W, Li G, Zhang H, Jing C, Chin S L, Cheng Y, Xu Z 2011Phys. Rev. A 84 063846

    [34]

    Antoine P, L'Huillier A, Lewenstein M 1996Phys. Rev. Lett. 77 1234

    [35]

    Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009PNAS 106 10516

    [36]

    Popmintchev T, Chen M C, Cohen O, Grisham M E, Rocca J J, Murnane M M, Kapteyn H C 2008Opt. Lett. 33 2128

    [37]

    Cirmi G, Lai C J, Granados E, Huang S W, Sell A, Hong K H, Moses J, Keathley P, Kärtner F X 2012J. Phys. B:At. Mol. Opt. Phys. 45 205601

    [38]

    Chen M C, Arpin P, Popmintchev T, Gerrity M, Zhang B, Seaberg M, Popmintchev D, Murnane M M, Kapteyn H C 2010Phys. Rev. Lett. 105 173901

    [39]

    Seideman T 1995J. Chem. Phys. 103 7887

    [40]

    Ortigoso J, Rodríguez M, Gupta M, Friedrich B 1999J. Chem. Phys. 110 3870

    [41]

    Kanai T, Takahashi E, Nabekawa Y, Midorikawa K 2007Phys. Rev. Lett. 98 153904

    [42]

    Lewenstein M, Salières P, L'Huillier A 1995Phys. Rev. A 52 4747

    [43]

    Keldysh L V 1965Sov. Phys. JETP 20 1307

  • [1] 于术娟, 刘竹琴, 李雁鹏. 对称分子${\text{H}}_{\text{2}}^{\text{ + }}$在强短波激光场中高次谐波椭偏率性质的研究. 物理学报, 2023, 72(4): 043101. doi: 10.7498/aps.72.20221946
    [2] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [3] 魏博宁, 焦志宏, 周效信. 非对称波形激光驱动的氢原子高次谐波频移及控制. 物理学报, 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [4] 杨艳, 张斌, 任仲雪, 白光如, 刘璐, 赵增秀. 极性分子CO高次谐波产生过程中的不对称性. 物理学报, 2022, 71(23): 234204. doi: 10.7498/aps.71.20221714
    [5] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [6] 袁长全, 郭迎春, 王兵兵. 准直的O2分子高次谐波谱中的干涉效应. 物理学报, 2021, 70(20): 204206. doi: 10.7498/aps.70.20210433
    [7] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波. 物理学报, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [8] 刘阳阳, 赵昆, 何鹏, 江昱佼, 黄杭东, 滕浩, 魏志义. 基于固体薄片超连续飞秒光源驱动的高次谐波产生实验. 物理学报, 2017, 66(13): 134207. doi: 10.7498/aps.66.134207
    [9] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究. 物理学报, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [10] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强. 物理学报, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [11] 李小刚, 李芳, 何志聪. 双色场驱动下高次谐波的径向量子轨道干涉. 物理学报, 2013, 62(8): 087201. doi: 10.7498/aps.62.087201
    [12] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [13] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [14] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [15] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟. 物理学报, 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [16] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [17] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟. 物理学报, 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [18] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟. 物理学报, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [19] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
    [20] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
计量
  • 文章访问数:  5123
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-30
  • 修回日期:  2016-10-13
  • 刊出日期:  2016-11-05

/

返回文章
返回