搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于固体薄片超连续飞秒光源驱动的高次谐波产生实验

刘阳阳 赵昆 何鹏 江昱佼 黄杭东 滕浩 魏志义

引用本文:
Citation:

基于固体薄片超连续飞秒光源驱动的高次谐波产生实验

刘阳阳, 赵昆, 何鹏, 江昱佼, 黄杭东, 滕浩, 魏志义

High harmonic generation experiments based on solid-state supercontinuum

Liu Yang-Yang, Zhao Kun, He Peng, Jiang Yu-Jiao, Huang Hang-Dong, Teng Hao, Wei Zhi-Yi
PDF
导出引用
  • 本文报道了采用基于熔石英薄片超连续的少周期飞秒光源驱动高次谐波产生的实验研究.实验中通过将重复频率1 kHz的飞秒钛宝石激光放大器所输出的能量0.8 mJ、脉宽30 fs的脉冲聚焦到7片0.1 mm厚的熔融石英片中,得到了覆盖带宽大于倍频程的展宽光谱.利用啁啾镜补偿色散后,经瞬态光栅频率分辨光学开关法测得脉宽为6.3 fs,对应约2.3个光学周期.利用压缩后的激光脉冲聚焦作用于惰性气体,并通过调节尖劈插入量改变脉宽,分别测得了分立以及连续的高次谐波截止区信号,结果与6.3 fs的脉冲宽度相符合.
    Intense few-cycle pulses are widely used in transient light synthesis,high harmonic generation (HHG) and especially in isolated attosecond pulse generation.To obtain intense few-cycle pulses,the intense supercontinuum is needed.The traditional way to generate intense supercontinuum is using rare gas filled hollow-core fibers.Since the input energy of hollow-core fiber system is limited to a level of tens of mJ,it is necessary to find new ways to achieve energy scaling.In this paper we demonstrate the efficient generation of supercontinuum by solid thin plates,compression and its application in HHG. The Ti:sapphire laser used in the present experiment emits 0.8 mJ in energy with a duration of 30 fs at 1 kHz.After passing through a 3:1 telescope,the beam has a diameter changed from 12 mm to 4 mm.Then the laser is focused by an f=2000 mm lens into a 600 m-diameter spot.After propagating through 7 fused silica plates placed at Brewster's angle (55.5) with a thickness of 0.1 mm,the 0.7 mJ octave spanning supercontinuum is achieved,corresponding to an efficiency of 87.5%.The first three plates are placed at 31,11,2.5 mm in front of the beam waist,and the last four plates are placed at 2,7,12,17 mm behind the beam waist respectively.With a pair of wedges and 4 pairs of chirped mirrors,the 0.68 mJ supercontinuum is compressed to a duration of 6.3 fs,which is measured by TG-FROG. The 0.5 mJ,6.3 fs pulse is used to perform high-harmonic generation experiment.The beam diameter is 150 m when focused by an f=400 mm lens,with a laser intensity of 8.11014 W/cm2.The 1 mm Ne gas jet is used to perform HHG experiment with a back pressure of 300 mbar.To block the near-infrared light,a 150 m Zirconium foil is placed behind the gas jet.Then the XUV spectrum is detected by a spectrometer,which consists of a flat field grating and a CCD camera.For driving pulses of few-cycle regime without dispersion,the cutoff spectrum of HHG is continuous.But when the pulse is stretched by positive or negative dispersion,the cutoff spectrum turns discrete.The HHG result is that the cutoff region is continuous when the wedge is in a certain place.Then by increasing or reducing the insertion of the wedge,the cutoff spectrum becomes discrete.Our result is consistent with HHG generated by few-cycle pulses. In conclusion,we demonstrate high-harmonic generation based on supercontinuum generated by solid thin plates. The 0.7 mJ supercontinuum is achieved when 0.8 mJ pulses are injected to 7 thin fused silica plates.The supercontinuum is compressed to 0.68 mJ,6.3 fs.The 0.5 mJ,6.3 fs pulse is used to perform HHG experiments.The HHG result was consistent with few-cycle driving pulses.Our research indicates that solid state supercontinuum has great potential applications in HHG and isolated attosecond pulse generation.
      通信作者: 赵昆, zhaokun@iphy.ac.cn;zywei@iphy.ac.cn ; 魏志义, zhaokun@iphy.ac.cn;zywei@iphy.ac.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:11434016)、国家自然科学基金(批准号:11574384,11674386)和国家重点基础研究发展计划(批准号:2013CB922401,2013CB922402)资助的课题.
      Corresponding author: Zhao Kun, zhaokun@iphy.ac.cn;zywei@iphy.ac.cn ; Wei Zhi-Yi, zhaokun@iphy.ac.cn;zywei@iphy.ac.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos.11434016,11574384,11674386) and the National Basic Research Program of China (Grant Nos.2013CB922401,2013CB922402).
    [1]

    Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D H, Keller U 1999 Appl. Phys. B 69 327

    [2]

    Wirth A, Hassan M, Grgura I, Gagnon J, et al. 2011 Science 334 195

    [3]

    McPherson A, Gibson G, Jara H, et al. 1987 J. Opt. Soc. Am. B 4 595

    [4]

    Baltuka A, Udem T, Uiberacker M, et al. 2003 Nature 421 611

    [5]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891

    [6]

    Mashiko H, Gilbertson S, Li C, Moon E, Chang Z 2008 Phys. Rev. A 77 063423

    [7]

    Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J, Nam C H 2005 Phys. Rev. Lett. 94 243901

    [8]

    Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 178

    [9]

    Shimizu F 1967 Phys. Rev. Lett. 19 1097

    [10]

    Yang G, Shen Y R 1984 Opt. Lett. 9 510

    [11]

    Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793

    [12]

    Cardin V, Thir N, Beaulieu S, Wanie V, Lgar F, Schmidt B E 2015 Appl. Phys. Lett. 107 181101

    [13]

    Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400

    [14]

    He P, Liu Y Y, Zhao K, et al. 2017 Opt. Lett. 42 474

    [15]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [16]

    Ye P 2014 Ph. D. Dissertation (Beijing:Institute of Physics, Chinese Academy of Sciences) (in Chinese)[叶蓬 2014 博士学位论文 (北京:中国科学院物理研究所)]

    [17]

    Wang X W, l Chini M, Cheng Y, Wu Y, Chang Z H 2013 Appl. Opt. 52 323

    [18]

    Tatsuo H, Kaoru T, Hideo S, Andrzej O 1999 Appl. Opt. 38 2743

    [19]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

  • [1]

    Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D H, Keller U 1999 Appl. Phys. B 69 327

    [2]

    Wirth A, Hassan M, Grgura I, Gagnon J, et al. 2011 Science 334 195

    [3]

    McPherson A, Gibson G, Jara H, et al. 1987 J. Opt. Soc. Am. B 4 595

    [4]

    Baltuka A, Udem T, Uiberacker M, et al. 2003 Nature 421 611

    [5]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891

    [6]

    Mashiko H, Gilbertson S, Li C, Moon E, Chang Z 2008 Phys. Rev. A 77 063423

    [7]

    Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J, Nam C H 2005 Phys. Rev. Lett. 94 243901

    [8]

    Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 178

    [9]

    Shimizu F 1967 Phys. Rev. Lett. 19 1097

    [10]

    Yang G, Shen Y R 1984 Opt. Lett. 9 510

    [11]

    Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793

    [12]

    Cardin V, Thir N, Beaulieu S, Wanie V, Lgar F, Schmidt B E 2015 Appl. Phys. Lett. 107 181101

    [13]

    Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400

    [14]

    He P, Liu Y Y, Zhao K, et al. 2017 Opt. Lett. 42 474

    [15]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [16]

    Ye P 2014 Ph. D. Dissertation (Beijing:Institute of Physics, Chinese Academy of Sciences) (in Chinese)[叶蓬 2014 博士学位论文 (北京:中国科学院物理研究所)]

    [17]

    Wang X W, l Chini M, Cheng Y, Wu Y, Chang Z H 2013 Appl. Opt. 52 323

    [18]

    Tatsuo H, Kaoru T, Hideo S, Andrzej O 1999 Appl. Opt. 38 2743

    [19]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

  • [1] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀. 物理学报, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] 魏博宁, 焦志宏, 周效信. 非对称波形激光驱动的氢原子高次谐波频移及控制. 物理学报, 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [3] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [4] 姚惠东, 崔波, 马思琦, 余超, 陆瑞锋. 原子错位堆栈增强双层MoS2高次谐波产率. 物理学报, 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [5] 范鑫, 梁红静, 单立宇, 闫博, 高庆华, 马日, 丁大军. 基于高次谐波产生的极紫外偏振涡旋光. 物理学报, 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [6] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波. 物理学报, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [7] 赵昆, 许思源, 江昱佼, 高亦谈, 刘阳阳, 何鹏, 滕浩, 朱江峰, 魏志义. 基于固体介质的倍频程连续光谱产生的研究进展. 物理学报, 2018, 67(12): 124203. doi: 10.7498/aps.67.20180706
    [8] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响. 物理学报, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [9] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强. 物理学报, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [10] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究. 物理学报, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [11] 余朝, 孙真荣, 郭东升. 高次谐波的Guo-Åberg-Crasemann理论及其截断定律. 物理学报, 2015, 64(12): 124207. doi: 10.7498/aps.64.124207
    [12] 陈高, 杨玉军, 郭福明. 晶体环境下高次谐波谱的截止频率分析. 物理学报, 2013, 62(8): 083202. doi: 10.7498/aps.62.083202
    [13] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [14] 刘昆陇, 洪伟毅, 王少义, 张庆斌, 陆培祥. 中红外偏振态门驱动产生高效的极宽超连续谱. 物理学报, 2011, 60(6): 063203. doi: 10.7498/aps.60.063203
    [15] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟. 物理学报, 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [16] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [17] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟. 物理学报, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [18] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [19] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究. 物理学报, 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
    [20] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟. 物理学报, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
计量
  • 文章访问数:  5600
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-07
  • 修回日期:  2017-05-10
  • 刊出日期:  2017-07-05

/

返回文章
返回