搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高次谐波X射线光源的三维纳米相干衍射成像技术

麻永俊 李睿晅 李逵 张光银 钮津 麻云凤 柯长军 鲍捷 陈英爽 吕春 李捷 樊仲维 张晓世

引用本文:
Citation:

基于高次谐波X射线光源的三维纳米相干衍射成像技术

麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世

Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources

Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi
PDF
HTML
导出引用
  • 相干衍射成像是近20年才发展起来的一种高分辨率计算成像技术. 其原理是通过采集相干光照明时样品产生的衍射图样, 使用相位恢复算法计算实现样品结构的三维(3D)成像. 区别于传统成像技术, 该技术具有多个显著优势: 1) 成像分辨率接近于照明光源波长; 2) 成像系统简单, 无需使用成像镜头, 成像系统通常由相干光源、样品和CCD组成; 3) 无相差、色差, 极紫外光子利用率高: 使用计算成像, 避免了引入器件的折射、反射和吸收等效应造成的相差和色差以及光子利用效率下降. 自上世纪末, 基于大型相干极紫外和X射线光源的相干衍射成像技术发展迅速, 已达亚纳米级分辨率. 此后, 随着飞秒激光高次谐波技术的成熟, 相干极紫外和X射线光源的体积和成本大幅度降低, 相干衍射成像技术得到进一步发展和推广. 发展至今日, 基于高次谐波的相干衍射成像技术已经成为一种有巨大应用潜力的纳米成像技术, 为半导体材料和器件表面形貌、生物微结构及动态演化、半导体和量子器件的化学成分及浓度分布、物理或化学动态过程以及量子状态等领域的探测成像提供了一种有效的技术方案, 并开始在高分辨率半导体检测领域中获得实际应用. 相信不久的将来, 基于高次谐波相干衍射成像技术将成为纳米量级显微成像技术的杰出代表, 成为和现有的原子力、近场光学、X射线、电子以及隧道扫描等显微成像相媲美的主流技术. 本文回顾了相干衍射成像及其照明光源技术的发展历程, 介绍了相干衍射成像技术现状和发展趋势, 然后说明高次谐波光源和相干衍射成像技术原理, 最后重点介绍了几种可以利用高次谐波的高相干、短波长、短脉冲及梳状超宽谱特性的衍射成像技术: 探针强度约束、反射模式、频闪照相、多模态叠层、单次曝光叠层、时间分辨多路复用叠层、角度扫描相敏成像等技术.
    Coherent diffractive imaging (CDI) using ultra-short wavelength light source has become an three-dimensional(3D) nanoimaging technique. In CDI, a target sample is first illuminated by a coherent EUV and soft X-ray light, then the diffraction pattern is recorded by using a charge coupled device (CCD), and finally the image of the sample is obtained based on the pattern by using a phase retrieval algorithm. Of the many currently available coherent EUV and soft X-ray light sources, the high-order harmonic generation (HHG) is the simplest in structure, the lowest in cost, and most compact in size. Therefore, it has become the most promising light source for CDI. Through years of development, HHG based CDI technique(HHG-CDI) has become an outstanding 3D nano-imaging technique with the advantages of no aberration, no damage, and no contact either, and it also possesses the extra-capabilities of probing the dynamics, chemical composition and quantum information in various semiconductor and quantum devices. We believe that the HHG-CDI will soon become a generic nano-imaging tool that can complement or even replace the matured nanoimaging techniques, such as atomic force, near field, X-ray, electron, or scanning tunneling microscopes.
      通信作者: 张晓世, zhangxs@aircas.ac.cn
      作者简介:
      麻永俊, 理学博士, 中国科学院空天信息创新研究院, 助理研究员. 研究领域: 第一性原理计算, 密度矩阵重整化群计算, 激光原理, 激光物质相互作用, 高次谐波, 相干衍射成像
      张晓世, 中国科学院空天信息创新研究院研究员, 博士生导师, 中国科学院大学首席教授, 中国科学院近代物理研究所兼职博导, 2017年国家高层次人才. 中国科学技术大学学士, 美国科罗拉多大学博尔德分校, 美国国家标准局和实验室天体物理联合实验室联合培养博士. 长期从事飞秒激光, 极紫外激光, 极端非线性光学以及相干衍射和量子成像等领域的研究及其工程化和商业化应用. 曾任职于美国知名超快激光器公司KMLabs Inc., 先后担任激光科学家, 极紫外激光技术经理和研发首席科学家. 带领团队研发出世界上首台极紫外飞秒激光器, 并实现商业化. 研制出创世界纪录的低温冷却高能量和高重频飞秒激光器, 斩获2016年美国西部光电展会颁发的Prism Award奖和2013年美国CLEO展会颁发的Laser Focus World创新一等奖. 曾在PRL, Nature Physics, Nature Photonics, Optica等国际知名期刊发表论文共50余篇, 被SCI引用逾1, 200次, 在国际国内重要的学术会议上做邀请报告20多次. 曾担任Optics Letters 的co-editor, SPIE Advanced Lithography分会委员会委员, 以及SPIE Photonics Asia, CIOP委员会委员
    • 基金项目: 中国科学院条件保障与财务局短脉冲激光技术团队(批准号: GJJSTD20200009)、国家重点研发计划(批准号: 2021YFB3602600)、国家自然科学基金青年科学基金(批准号62005291)和中国科学院“百人计划”(批准号: 2018-131-S)资助的课题.
      Corresponding author: Zhang Xiao-Shi, zhangxs@aircas.ac.cn
    • Funds: Project supported by the Short Pulse Laser Technology Team of Condition Guarantee and Finance Bureau, Chinese Academy of Sciences(Grant No. GJJSTD20200009), the National Key R&D Program of China (Grant No. 2021YFB3602600), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62005291), and the Chinese Academy of Science Pioneer Hundred Talents Program (Grant No. 2018-131-S).
    [1]

    Shadfan A, Pawlowski M, Wang Y, Subramanian K, Gabay I, Ben-Yakar A, Tkaczyk T 2016 Opt. Eng. 55 025107Google Scholar

    [2]

    Parimi P V, Lu W T T, Vodo P, Sridhar S 2003 Nature 426 404Google Scholar

    [3]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [4]

    Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E 1986 Biophys. J. 49 269Google Scholar

    [5]

    Wokosin D L, Centonze V E, Crittenden S, White J 2015 Bioimaging 4 208

    [6]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73Google Scholar

    [7]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793Google Scholar

    [8]

    Hunt B R, Overman T L, Gough P 1998 Opt. Lett. 23 1123Google Scholar

    [9]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342

    [10]

    Seibert M M, Ekeberg T, Maia F R, Svenda M, Andreasson J, Jonsson O, Odic D, Iwan B, Rocker A, Westphal D, Hantke M, DePonte D P, Barty A, Schulz J, Gumprecht L, Coppola N, Aquila A, Liang M, White T A, Martin A, Caleman C, Stern S, Abergel C, Seltzer V, Claverie J M, Bostedt C, Bozek J D, Boutet S, Miahnahri A A, Messerschmidt M, Krzywinski J, Williams G, Hodgson K O, Bogan M J, Hampton C Y, Sierra R G, Starodub D, Andersson I, Bajt S, Barthelmess M, Spence J C, Fromme P, Weierstall U, Kirian R, Hunter M, Doak R B, Marchesini S, Hau-Riege S P, Frank M, Shoeman R L, Lomb L, Epp S W, Hartmann R, Rolles D, Rudenko A, Schmidt C, Foucar L, Kimmel N, Holl P, Rudek B, Erk B, Homke A, Reich C, Pietschner D, Weidenspointner G, Struder L, Hauser G, Gorke H, Ullrich J, Schlichting I, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel K U, Andritschke R, Schroter C D, Krasniqi F, Bott M, Schorb S, Rupp D, Adolph M, Gorkhover T, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Chapman H N, Hajdu J 2011 Nature 470 78Google Scholar

    [11]

    Ekeberg T E, Svenda M, Abergel C, Maia F R N C, Seltzer V, Claverie J-M, Hantke M, Joensson O, Nettelblad C, van der Schot G, Liang M, DePonte D P, Barty A, Seibert M M, Iwan B, Andersson I, Loh N D, Martin A V, Chapman H, Bostedt C, Bozek J D, Ferguson K R, Krzywinski J, Epp S W, Rolles D, Rudenko A, Hartmann R, Kimmel N, Hajdu J 2015 Phys. Rev. Lett. 114 098102Google Scholar

    [12]

    Sandberg R L, Paul A, Raymondson D A, Haedrich S, Gaudiosi D M, Holtsnider J, Tobey R a I, Cohen O, Murnane M M, Kapteyn H C, Song C, Miao J, Liu Y, Salmassi F 2007 Phys. Rev. Lett. 99 098103Google Scholar

    [13]

    Iii C D, Rundquist A R, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [14]

    Gardner D F, Zhang B, Seaberg M D, Martin L S, Adams D E, Salmassi F, Gullikson E, Kapteyn H, Murnane M 2012 Opt. Express 20 19050Google Scholar

    [15]

    Seaberg M D, Adams D E, Zhang B, Murnane M M, Kapteyn H C 2012 Conference on Lasers and Electro-Optics San Jose, California, USA, May 06 2012 p CF1 L. 8

    [16]

    Seaberg M D, Zhang B, Gardner D F, Shanblatt E R, Murnane M M, Kapteyn H C, Adams D E 2014 Optica 1 39Google Scholar

    [17]

    Abbey B, Nugent K A, Williams G J, Clark J N, Peele A G, Pfeifer M A, de Jonge M, McNulty I 2008 Nat. Phys. 4 394Google Scholar

    [18]

    Zhang B, Seaberg M D, Adams D E, Gardner D F, Shanblatt E R, Shaw J M, Chao W, Gullikson E M, Salmassi F, Kapteyn H C, Murnane M M 2013 Opt. Express 21 21970Google Scholar

    [19]

    Gardner D F, Tanksalvala M, Shanblatt E R, Zhang X, Galloway B R, Porter C L, Karl R, Jr., Bevis C, Adams D E, Kapteyn H C, Murnane M, Mancini G F 2017 Nat. Photonics 11 259Google Scholar

    [20]

    Mancini G F, Gardner D F, Tanksalvala M, Shanblatt E R, Zhang X, Galloway B R, Porter C R, Karl R, Bevis C, Kapteyn H, Murnane M M, Adams D E 2016 International Conference on Ultrafast Phenomena Santa Fe, New Mexico, USA, July 17 2016 pUTu2 B. 2

    [21]

    Porter C L, Tanksalvala M, Gerrity M, Miley G, Zhang X, Bevis C, Shanblatt E, Karl R, Jr., Murnane M M, Adams D E, Kapteyn H C 2017 Optica 4 1552Google Scholar

    [22]

    Whitehead L W, Williams G J, Quiney H M, Vine D J, Dilanian R A, Flewett S, Nugent K A, Peele A G, Balaur E, McNulty I 2009 Phys. Rev. Lett. 103 243902Google Scholar

    [23]

    Thibault P, Menzel A 2013 Nature 494 68Google Scholar

    [24]

    Karl R, Mancini G, Gardner D, Knobloch J, Frazer T, Hernandez-Charpak J N, Mayor B A, Shanblatt E, Tanksalvala M, Porter C, Bevis C, Adams D, Kapteyn H, Murnane M M 2017 Imaging and Applied Optics San Francisco, California, USA, June 26, 2017 pCW1 B. 2

    [25]

    Karl R, Mancini G, Gardner D, Shanblatt E, Knobloch J, Frazer T, Hernandez-Charpak J N, Mayor B A, Tanksalvala M, Porter C, Bevis C, Adams D, Kapteyn H, Murnane M 2018 High-Brightness Sources and Light-driven Interactions Strasbourg, France, March 26, 2018 pET2B.6

    [26]

    Pan X, Liu C, Zhu J 2013 Appl. Phys. Lett. 103 171105Google Scholar

    [27]

    Sidorenko P, Cohen O 2016 Optica 3 9Google Scholar

    [28]

    Sidorenko P, Lahav O, Cohen O 2017 Opt. Express 25 10997Google Scholar

    [29]

    Wengrowicz O, Peleg O, Loevsky B, Chen B K, Haham G I, Sainadh U S, Cohen O 2019 Opt. Express 27 24568Google Scholar

    [30]

    Tanksalvala M, Porter C L, Esashi Y, Wang B, Jenkins N W, Zhang Z, Miley G P, Knobloch J L, McBennett B, Horiguchi N, Yazdi S, Zhou J, Jacobs M N, Bevis C S, Karl R M, Jr., Johnsen P, Ren D, Waller L, Adams D E, Cousin S L, Liao C T, Miao J, Gerrity M, Kapteyn H C, Murnane M M 2021 Sci. Adv. 7 9667Google Scholar

    [31]

    Le H V, Dinh K B, Hannaford P, Van Dao L 2014 J. Appl. Phys. 116 173104

    [32]

    Karl R M, Mancini G F, Knobloch J L, Frazer T D, Hernandez-Charpak J N, Abad B, Gardner D F, Shanblatt E R, Tanksalvala M, Porter C L, Bevis C S, Adams D E, Kapteyn H C, Murnane M M 2018 Sci. Adv. 4 eaau4295Google Scholar

    [33]

    Antunez P D, Bishop D M, Luo Y, Haight R 2017 Nat. Energy 2

    [34]

    Frazer T D, Knobloch J L, Hernández-Charpak J N, Hoogeboom-Pot K M, Nardi D, Yazdi S, Chao W, Anderson E H, Tripp M K, King S W, Kapteyn H C, Murnane M M, Abad B 2020 Phys. Rev. Mater. 4 073603Google Scholar

    [35]

    King S W, Simka H, Herr D, Akinaga H, Garner M 2013 APL Mater. 1 040701Google Scholar

    [36]

    Mochi I, Fernandez S, Nebling R, Locans U, Helfenstein P, Rajeev R, Dejkameh A, Kazazis D, Tseng L T, Ekinci Y 2019 Amplitude and Phase Defect Inspection on EUV Reticles Using RESCAN p29

    [37]

    Moler K A 2017 Nat. Mater. 16 1049Google Scholar

    [38]

    Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, Rothhardt J, Limpert J 2021 PhotoniX 2 4Google Scholar

    [39]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [40]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535Google Scholar

    [41]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [42]

    Ammosov M V, Delone N B, Krainov V P 1986 Proceedings of SPIE Quebec, Canada, October 21, 1986 p138

    [43]

    盛政明编 2003 强场激光物理研究前沿(上海: 上海交通大学出版社) 第5, 57页

    Sheng Z M 2014 Advances in High Field Laser Physics (Shanghai: Shanghai Jiao Tong University Press) pp5, 57 (in Chinese)

    [44]

    Zhang X, Libertun A R, Paul A, Gagnon E, Backus S, Christov I P, Murnane M M, Kapteyn H C, Bartels R A, Liu Y, Attwood D T 2004 Opt. Lett. 29 1357Google Scholar

    [45]

    Rundquist A, Durfee C G, Chang Z H, Herne C, Backus S, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [46]

    Bartels R A, Paul A, Green H, Kapteyn H C, Murnane M M, Backus S, Christov I P, Liu Y W, Attwood D, Jacobsen C 2002 Science 297 376

    [47]

    Zhang X S, Lytle A, Popmintchev T, Paul A, Wagner N, Murnane M, Kapteyn H, Christov I P 2005 Opt. Lett. 30 1971Google Scholar

    [48]

    Lytle A L, Zhang X, Arpin P, Cohen O, Murnane M M, Kapteyn H C, Ieee 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference San Jose, CA, USA, May 4–9 p1984

    [49]

    Corkum P B, Krausz F 2007 Nat. Phys. 3 381

    [50]

    Martin G, Tobias H, Robert K, Alexander K, Chang L, Ziyao W, Mathias L, Christian G, Cesar J, Jose A L, Axel S, Rodrigo A C, Jan R, Jens L Proc. SPIE

    [51]

    Feehan J S, Price J H V, Butcher T J, Brocklesby W S, Frey J G, Richardson D J 2017 Appl. Phys. B 123 43

    [52]

    Hoppe W 1969 Acta Crystallogr. Sect. A 25 508Google Scholar

    [53]

    Robinson I K, Vartanyants I A, Williams G J, Pfeifer M A, Pitney J A 2001 Phys. Rev. Lett. 87 195505Google Scholar

    [54]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795Google Scholar

    [55]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506Google Scholar

    [56]

    Roy S, Parks D, Seu K A, Su R, Turner J J, Chao W, Anderson E H, Cabrini S, Kevan S D 2011 Nat. Photonics 5 243Google Scholar

    [57]

    Bates R H T 1982 Phys. Rep. 90 203Google Scholar

    [58]

    Miao J, Sayre D, Chapman H N 1998 J. Opt. Soc. Am. A 15 1662Google Scholar

    [59]

    Gerchberg R W, Saxton, W. O. 1972 Optik 35 237

    [60]

    Burge R E 1981 Scanning 4 159

    [61]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [62]

    Streibl N 1984 Opt. Commun. 49 6Google Scholar

    [63]

    Teague M R 1983 J. Opt. Soc. Am. A 73 1434Google Scholar

    [64]

    Sayre D 1952 Acta Crystallogr. 5 843

    [65]

    Hoppe W 1969 Acta Crystallogr. Sect. A 25 495Google Scholar

    [66]

    Hoppe W, Strube G 1969 Acta Crystallogr. Sect. A 25 502Google Scholar

    [67]

    Hegerl R, Hoppe W 1972 Proceedings of the 5th European Congress on Electron Microscopy p628

    [68]

    Marchesini S 2007 Rev. Sci. Instrum. 78 011301Google Scholar

    [69]

    Bauschke H H, Combettes P L, Luke D R 2002 J. Opt. Soc. Am. A 19 1334Google Scholar

    [70]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

    [71]

    Pan X C, Liu C, Tao H, Liu H G, Zhu J Q 2020 Acta Optica Sinica 40 111010Google Scholar

    [72]

    Maiden A M, Humphry M J, Rodenburg J M 2012 J. Opt. Soc. Am. A 29 1606

    [73]

    Zhang F, Peterson I, Vila-Comamala J, Berenguer A D F, Bean R, Chen B, Menzel A, Robinson I K, Rodenburg J M 2013 Opt. Express 21 13592Google Scholar

    [74]

    Zheng G, Horstmeyer R, Yang C 2015 Nat. Photonics 9 621Google Scholar

    [75]

    Shanblatt E R, Porter C L, Gardner D F, Mancini G F, Karl R M, Tanksalvala M,Bevis C S, Vartanian V H, Kapteyn H C, Adams D E 2016 Computational Optical Sensing and Imaging 2016 CT4C.1

    [76]

    Raines K S, Salha S, Sandberg R L, Jiang H, Rodriguez J A, Fahimian B P,Kapteyn H C, Du J, Miao J 2010 Nature 463 214

    [77]

    Miao J, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [78]

    Spence J C H, Weierstall U, Howells M 2004 Ultramicroscopy 101 149Google Scholar

    [79]

    Abbey B, Whitehead L W, Quiney H M, Vine D J, Cadenazzi G A, Henderson C A, Nugent K A, Balaur E, Putkunz C T, Peele A G, Williams G J, McNulty I 2011 Nat. Photonics 5 420Google Scholar

    [80]

    Batey D J, Claus D, Rodenburg J M 2014 Ultramicroscopy 138 13Google Scholar

    [81]

    Williams G J, Quiney H M, Peele A G, Nugent K A 2007 Phys. Rev. B 75 4102

    [82]

    Chen B, Dilanian R A, Teichmann S, Abbey B, Peele A, Williams G J, Hannaford P, Dao L V, Quiney H M, Nugent K A 2009 Phys. Rev. A 79 023809Google Scholar

    [83]

    Zhang B, Gardner D F, Seaberg M H, Shanblatt E R, Porter C L, Karl R, Mancuso C A, Kapteyn H C, Murnane M M, Adams D E 2016 Opt. Express 24 18745Google Scholar

    [84]

    Bevis C, Karl R, Reichanadter J, Gardner D F, Porter C, Shanblatt E, Tanksalvala M, Mancini G F, Kapteyn H, Murnane M, Adams D 2018 Ultramicroscopy 184 164Google Scholar

    [85]

    Karl R, Bevis C, Lopez-Rios R, Reichanadter J, Gardner D, Porter C, Shanblatt E, Tanksalvala M, Mancini G F, Murnane M, Kapteyn H, Adams D 2015 Opt. Express 23 30250Google Scholar

    [86]

    Rönsch-Schulenburg J, Faatz B, Honkavaara K, Kuhlmann M, Schreiber S, Treusch R, Vogt M 2017 J. Phys. Conf. Ser. 874 012023Google Scholar

    [87]

    Ellis J L, Dorney K M, Hickstein D D, Brooks N J, Gentry C, Hernández-García C, Zusin D, Shaw J M, Nguyen Q L, Mancuso C A, Matthijs Jansen G S, Witte S, Kapteyn H C, Murnane M M 2018 Optica 5 479Google Scholar

    [88]

    Hirose M, Higashino T, Ishiguro N, Takahashi Y 2020 Opt. Express 28 1216Google Scholar

    [89]

    Yao Y, Jiang Y, Klug J A, Wojcik M, Maxey E R, Sirica N S, Roehrig C, Cai Z, Vogt S, Lai B, Deng J 2020 Sci. Rep. 10 19550Google Scholar

    [90]

    Rokitski R, Sun P C, Fainman Y 2001 Opt. Lett. 26 1125Google Scholar

    [91]

    Beck A, Teboulle M 2009 IEEE Trans. Image Process. 18 2419Google Scholar

    [92]

    Cho A 2012 Science 338 1136Google Scholar

  • 图 1  HHG相干衍射成像(HHG-CDI)的发展史

    Fig. 1.  The evolution of HHG-based coherent diffraction imaging (HHG-CDI).

    图 2  (a)上海光源主加速器; (b)台面HHG-EUV/SXR射线光源

    Fig. 2.  (a)Shanghai synchrotron radiation facility(SSRF); (b) a HHG-EUV/SXR source.

    图 3  HHG产生的“三步模型”. 原子势垒会被激光场调制, 电子发生隧穿电离; 然后在激光电场加速; 随着电场反向, 电离电子与母核复合, 把获得能量以HHG光子辐射 (制作本图参考了文献 [49] )

    Fig. 3.  The illustration of the three-step Model. The tunneling ionization can occur as the atomic barrier is modulated by the laser field. Then the electron is accelerated in the electric field; As the electric field is reversed, the ionized electron recombines with the parent nucleus and radiates its energy as HHG photons,Figure reproduced from Ref. [49]

    图 4  自由空间聚焦与空心波导HHG对比图

    Fig. 4.  The comparison of HHG in free space focusing and hollow waveguide.

    图 5  平面屏衍射示意图

    Fig. 5.  The schematic chart of plane diffraction.

    图 6  CDI相位恢复算法原理

    Fig. 6.  The technical schematic and algorithm flow chart of CDI.

    图 7  凸集映射示意图, 一个随机猜测投影到检测器平面约束集, 然后投影到样本平面约束集, 完成一个更新周期. 多次迭代后, 找到两个约束集的交点: 真解

    Fig. 7.  Diagram of convex-set mapping, a random guess is first projected to the detector plane constraint set, then to the sample plane constraint set to finish a full updating cycle. After many iterations, the solution is found at the intersection of the two constraint sets.

    图 8  扫描相干衍射成像示意及迭代原理(ePIE)(制作本图及图 17 参考了文献[71])

    Fig. 8.  The iterative principle of Ptychography(ePIE), Fig.8 and Fig.17 reproduced with reference to ref.[71]

    图 9  HHG-CDI纳米成像系统

    Fig. 9.  The coherent diffraction imaging system for a HHG extreme ultraviolet laser source.

    图 10  Ptychography算法中MEP约束的流程示意图[19]

    Fig. 10.  Schematic layout of the MEP constraint within the ptychography algorithm[19].

    图 11  MEP约束获得Ptychographic重建和无MEP约束的波带片Ptychographic重建比较[19]

    Fig. 11.  Comparison of Ptychographic reconstructions with MEP constraint and without MEP constraint for Zone Plate samples.[19]

    图 12  (a)Ewald 球; (b)正常入射样品照明和(c)斜入射照明的散射(图(b) , (c)参考文献[14])

    Fig. 12.  (a)Ewald sphere; (b)normally incident sample illumination and (b) obliquely incident illumination(panel (b) and panel (c) refer to the Ref.[14]).

    图 13  反射模式相干衍射成像 (a) CCD上的实测衍射图; (b)采用校正算法, 提取图(a)中每个衍射峰的值, 重采样衍射图; (c)重建显示所有照明柱的平均值; (d)类似柱状结构的原子力显微镜图像[15]

    Fig. 13.  Reflection-mode coherent diffraction imaging: (a) measured diffraction pattern on CCD; (b) resampled diffraction pattern in panel (a); (c) reconstruction showing the average of all illuminated pillars; (d) atomic force microscope image of similar pillar structures[15].

    图 14  实验装置、衍射数据和Ptychography重建结果 (a) 90次扫描数据集的代表性衍射图样; (b) SEM像; (c)探针重建; (d)样品重建[16]

    Fig. 14.  Experimental setup for reflection-mode ptychography, diffraction data and ptychographic reconstruction: (a) Representative diffraction pattern taken from the 90-scan dataset; (b) SEM image of the sample; (c) reconstructed amplitude of the HHG beam; (d) Ptychographic reconstruction of the object[16].

    图 15  (a)频闪CDI动态成像实验布局示意图; (b)在每个时间延迟时, 用Ptychography获得样本的图像; (c)不同时间延迟下动态成像实验; (d)硅基镍纳米线的衍射图; (e)衍射效率作为泵浦探测延迟时间的函数的瞬态信号图[24]

    Fig. 15.  (a) Schematic of the experimental layout for dynamic imaging on a tabletop; (b) tt every time delay, the image of the sample is obtained with Ptychographic CDI; (c) general concept of dynamic imaging experiment; (d) diffraction pattern of the Nickel lines on Silicon; (e) plot of the transient signal from diffraction efficiency as a function of pump-probe delay time[24].

    图 16  单个纳米结构中声波的动态成像. (a)频闪CDI显微镜动态成像实验装置; (b)重建样品振幅图像; (c)重建样品相位得到的高度图; (d)—(i) 重建镍纳米结构热膨胀和随后声波在基板中传播的快照[32]

    Fig. 16.  Dynamic imaging of acoustic waves in an individual nanostructure: (a) Stroboscopic CDI microscope for dynamic imaging; (b) reconstructed quantitative amplitude image; (c) height map of the sample obtained from the reconstructed phase image; (d)–(i) ieconstructed snapshots of the nickel nanostructure thermal expansion and subsequent propagation of acoustic waves in the substrate[32]

    图 17  部分相干光(多色光)的 ePIE 迭代原理

    Fig. 17.  The ePIE system for partially coherent light.

    图 18  结合HHG多次极紫外谐波的多光谱衍射成像 (a), (b) 6波长非扫描透射成像模式[82]; (c), (d) 4波长的叠层扫描反射成像模式[83]

    Fig. 18.  Hyperspectral imaging by combining multiple EUV harmonics and PIM: (a), (b) a 6-wavelength non-scanning transmission mode CDI[82]; (c), (d) a ptychographic hyperspectral spectromicroscopy with a 4-wavelength comb[83].

    图 19  探针空间分离CDI (a)对多色光进行光栅分离; (b)利用BBO晶体对正交线偏振态分离[85]

    Fig. 19.  Ptychograpic CDI with spatially separate beams: (a)Spectral multiplexing with spatially separate beams; (b) polarization multiplexing with spatially separate beams[85].

    图 20  (a) 基于小孔阵列的SSP-显微镜示意图; (b) 基于脉冲串照明单镜头曝光的TIMP原理示意图[28]

    Fig. 20.  (a) Schematic diagram of SSP-microscope with ray tracing;(b)schematic diagram of TIMP based on single-shot ptychographic microscope[28].

    图 21  使用OAME重建9个复值对象和探针 (a)单架照相机抓拍所记录的强度图样;(b)重建帧复值对象和探头, 每帧分为4个区域(如第一帧):左上为物体振幅, 右上为物体相位, 左下为探头振幅, 右下为探头相位[27]

    Fig. 21.  Reconstruction of 9 complex-valued objects and probes using OAME: (a) The intensity pattern recorded in a single camera snapshot; (b) reconstructed frames - complex-valued objects and probes. Each frame is divided to 4 quarters (as marked on the first frame): top-left is object amplitude, top-right is object phase, bottom left is probe amplitude and bottom-right is probe phase[27].

    图 22  未涂层(顶行)和铝涂层样品(底行)的 EUV Ptychography 图像. 作为比较, AFM 图像和 SEM 图像也在图中显示[75]

    Fig. 22.  EUV ptychography images of the uncoated (top row) and Al-coated sample (bottom row). AFM images and SEM images are also shown as comparisons[75].

    图 23  纳米结构成像 (a)幅值和相位敏感成像反射仪的原理图; (b), (c)实施3D倾斜平面校正和全变分正则化处理和未作相应处理的相位重建; (d)宽视场振幅重建; (e) (f)材料的特征反射率与角度曲线—EUV光对材料成分的敏感性[30]

    Fig. 23.  Experiment overview and nanostructure imaging: (a) Schematic of the amplitude- and phase-sensitive imaging reflectometer. Zoom-in of EUV ptychographic phase reconstructions of the sample, (b) before and (c) after precise implementation of 3D tilted-plane correction and total variation (TV) regularization. (d) Entire, wide field-of-view amplitude reconstruction. (e), (f) Characteristic reflectivity versus angle curves for several materials, showing the sensitivity of EUV light to material composition[30].

    图 24  空间分辨、组成敏感和三维纳米结构表征 (a)高掺杂结构, (b)低掺杂衬底和(c)高掺杂衬底中的成分与深度重建; (d)全重构样品的放大(插图); (e) Ptychography相位图像与遗传算法结果相结合得到的结果; (f)同一区域的AFM图像[30]

    Fig. 24.  Spatially resolved, composition-sensitive, 3D nanostructure characterization: Composition versus depth reconstruction in the (a) higher-doped structures, (b) lower-doped substrate, and (c) higher-doped substrate; (D) zoom-out and zoom-in (inset) of fully reconstructed sample; (e) topography map obtained by combining the ptychographic phase image with the results of the genetic algorithm; (f) AFM image of the same region[30].

    表 1  半导体器件技术领域常用的几种纳米成像技术和相干衍射成像技术的对比

    Table 1.  Comparison of several nano-imaging techniques commonly used in semiconductor technology.

    纳米成像
    技术
    分辨率/nm光源镜头样品损伤/
    预处理
    表面3D
    形貌
    镀层下结构/
    层厚度检测
    化学成分/浓度成像
    速度
    光学显微镜~100红外, 可见光透镜无损伤无需处理可探测部分可探测/
    透明料可以
    可探测/半
    导体不可
    X射线显微镜~20SRS, XFEL波带片有损伤
    无需处理
    不能探测均可实现可探测
    扫描电子显微镜~0.1电子束磁透镜有损伤
    需处理
    可探测金属层不可/厚度不可无法探测较慢
    原子力显微镜~0.1 nm纳米探针无损伤
    无需处理
    可探测无法探测无法探测最慢
    HHG-CDI<10 nmSRS, FEL.HHG无透镜无损伤无需处理可探测均可探测可探测
    下载: 导出CSV
  • [1]

    Shadfan A, Pawlowski M, Wang Y, Subramanian K, Gabay I, Ben-Yakar A, Tkaczyk T 2016 Opt. Eng. 55 025107Google Scholar

    [2]

    Parimi P V, Lu W T T, Vodo P, Sridhar S 2003 Nature 426 404Google Scholar

    [3]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [4]

    Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E 1986 Biophys. J. 49 269Google Scholar

    [5]

    Wokosin D L, Centonze V E, Crittenden S, White J 2015 Bioimaging 4 208

    [6]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73Google Scholar

    [7]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793Google Scholar

    [8]

    Hunt B R, Overman T L, Gough P 1998 Opt. Lett. 23 1123Google Scholar

    [9]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342

    [10]

    Seibert M M, Ekeberg T, Maia F R, Svenda M, Andreasson J, Jonsson O, Odic D, Iwan B, Rocker A, Westphal D, Hantke M, DePonte D P, Barty A, Schulz J, Gumprecht L, Coppola N, Aquila A, Liang M, White T A, Martin A, Caleman C, Stern S, Abergel C, Seltzer V, Claverie J M, Bostedt C, Bozek J D, Boutet S, Miahnahri A A, Messerschmidt M, Krzywinski J, Williams G, Hodgson K O, Bogan M J, Hampton C Y, Sierra R G, Starodub D, Andersson I, Bajt S, Barthelmess M, Spence J C, Fromme P, Weierstall U, Kirian R, Hunter M, Doak R B, Marchesini S, Hau-Riege S P, Frank M, Shoeman R L, Lomb L, Epp S W, Hartmann R, Rolles D, Rudenko A, Schmidt C, Foucar L, Kimmel N, Holl P, Rudek B, Erk B, Homke A, Reich C, Pietschner D, Weidenspointner G, Struder L, Hauser G, Gorke H, Ullrich J, Schlichting I, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel K U, Andritschke R, Schroter C D, Krasniqi F, Bott M, Schorb S, Rupp D, Adolph M, Gorkhover T, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Chapman H N, Hajdu J 2011 Nature 470 78Google Scholar

    [11]

    Ekeberg T E, Svenda M, Abergel C, Maia F R N C, Seltzer V, Claverie J-M, Hantke M, Joensson O, Nettelblad C, van der Schot G, Liang M, DePonte D P, Barty A, Seibert M M, Iwan B, Andersson I, Loh N D, Martin A V, Chapman H, Bostedt C, Bozek J D, Ferguson K R, Krzywinski J, Epp S W, Rolles D, Rudenko A, Hartmann R, Kimmel N, Hajdu J 2015 Phys. Rev. Lett. 114 098102Google Scholar

    [12]

    Sandberg R L, Paul A, Raymondson D A, Haedrich S, Gaudiosi D M, Holtsnider J, Tobey R a I, Cohen O, Murnane M M, Kapteyn H C, Song C, Miao J, Liu Y, Salmassi F 2007 Phys. Rev. Lett. 99 098103Google Scholar

    [13]

    Iii C D, Rundquist A R, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [14]

    Gardner D F, Zhang B, Seaberg M D, Martin L S, Adams D E, Salmassi F, Gullikson E, Kapteyn H, Murnane M 2012 Opt. Express 20 19050Google Scholar

    [15]

    Seaberg M D, Adams D E, Zhang B, Murnane M M, Kapteyn H C 2012 Conference on Lasers and Electro-Optics San Jose, California, USA, May 06 2012 p CF1 L. 8

    [16]

    Seaberg M D, Zhang B, Gardner D F, Shanblatt E R, Murnane M M, Kapteyn H C, Adams D E 2014 Optica 1 39Google Scholar

    [17]

    Abbey B, Nugent K A, Williams G J, Clark J N, Peele A G, Pfeifer M A, de Jonge M, McNulty I 2008 Nat. Phys. 4 394Google Scholar

    [18]

    Zhang B, Seaberg M D, Adams D E, Gardner D F, Shanblatt E R, Shaw J M, Chao W, Gullikson E M, Salmassi F, Kapteyn H C, Murnane M M 2013 Opt. Express 21 21970Google Scholar

    [19]

    Gardner D F, Tanksalvala M, Shanblatt E R, Zhang X, Galloway B R, Porter C L, Karl R, Jr., Bevis C, Adams D E, Kapteyn H C, Murnane M, Mancini G F 2017 Nat. Photonics 11 259Google Scholar

    [20]

    Mancini G F, Gardner D F, Tanksalvala M, Shanblatt E R, Zhang X, Galloway B R, Porter C R, Karl R, Bevis C, Kapteyn H, Murnane M M, Adams D E 2016 International Conference on Ultrafast Phenomena Santa Fe, New Mexico, USA, July 17 2016 pUTu2 B. 2

    [21]

    Porter C L, Tanksalvala M, Gerrity M, Miley G, Zhang X, Bevis C, Shanblatt E, Karl R, Jr., Murnane M M, Adams D E, Kapteyn H C 2017 Optica 4 1552Google Scholar

    [22]

    Whitehead L W, Williams G J, Quiney H M, Vine D J, Dilanian R A, Flewett S, Nugent K A, Peele A G, Balaur E, McNulty I 2009 Phys. Rev. Lett. 103 243902Google Scholar

    [23]

    Thibault P, Menzel A 2013 Nature 494 68Google Scholar

    [24]

    Karl R, Mancini G, Gardner D, Knobloch J, Frazer T, Hernandez-Charpak J N, Mayor B A, Shanblatt E, Tanksalvala M, Porter C, Bevis C, Adams D, Kapteyn H, Murnane M M 2017 Imaging and Applied Optics San Francisco, California, USA, June 26, 2017 pCW1 B. 2

    [25]

    Karl R, Mancini G, Gardner D, Shanblatt E, Knobloch J, Frazer T, Hernandez-Charpak J N, Mayor B A, Tanksalvala M, Porter C, Bevis C, Adams D, Kapteyn H, Murnane M 2018 High-Brightness Sources and Light-driven Interactions Strasbourg, France, March 26, 2018 pET2B.6

    [26]

    Pan X, Liu C, Zhu J 2013 Appl. Phys. Lett. 103 171105Google Scholar

    [27]

    Sidorenko P, Cohen O 2016 Optica 3 9Google Scholar

    [28]

    Sidorenko P, Lahav O, Cohen O 2017 Opt. Express 25 10997Google Scholar

    [29]

    Wengrowicz O, Peleg O, Loevsky B, Chen B K, Haham G I, Sainadh U S, Cohen O 2019 Opt. Express 27 24568Google Scholar

    [30]

    Tanksalvala M, Porter C L, Esashi Y, Wang B, Jenkins N W, Zhang Z, Miley G P, Knobloch J L, McBennett B, Horiguchi N, Yazdi S, Zhou J, Jacobs M N, Bevis C S, Karl R M, Jr., Johnsen P, Ren D, Waller L, Adams D E, Cousin S L, Liao C T, Miao J, Gerrity M, Kapteyn H C, Murnane M M 2021 Sci. Adv. 7 9667Google Scholar

    [31]

    Le H V, Dinh K B, Hannaford P, Van Dao L 2014 J. Appl. Phys. 116 173104

    [32]

    Karl R M, Mancini G F, Knobloch J L, Frazer T D, Hernandez-Charpak J N, Abad B, Gardner D F, Shanblatt E R, Tanksalvala M, Porter C L, Bevis C S, Adams D E, Kapteyn H C, Murnane M M 2018 Sci. Adv. 4 eaau4295Google Scholar

    [33]

    Antunez P D, Bishop D M, Luo Y, Haight R 2017 Nat. Energy 2

    [34]

    Frazer T D, Knobloch J L, Hernández-Charpak J N, Hoogeboom-Pot K M, Nardi D, Yazdi S, Chao W, Anderson E H, Tripp M K, King S W, Kapteyn H C, Murnane M M, Abad B 2020 Phys. Rev. Mater. 4 073603Google Scholar

    [35]

    King S W, Simka H, Herr D, Akinaga H, Garner M 2013 APL Mater. 1 040701Google Scholar

    [36]

    Mochi I, Fernandez S, Nebling R, Locans U, Helfenstein P, Rajeev R, Dejkameh A, Kazazis D, Tseng L T, Ekinci Y 2019 Amplitude and Phase Defect Inspection on EUV Reticles Using RESCAN p29

    [37]

    Moler K A 2017 Nat. Mater. 16 1049Google Scholar

    [38]

    Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, Rothhardt J, Limpert J 2021 PhotoniX 2 4Google Scholar

    [39]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [40]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535Google Scholar

    [41]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [42]

    Ammosov M V, Delone N B, Krainov V P 1986 Proceedings of SPIE Quebec, Canada, October 21, 1986 p138

    [43]

    盛政明编 2003 强场激光物理研究前沿(上海: 上海交通大学出版社) 第5, 57页

    Sheng Z M 2014 Advances in High Field Laser Physics (Shanghai: Shanghai Jiao Tong University Press) pp5, 57 (in Chinese)

    [44]

    Zhang X, Libertun A R, Paul A, Gagnon E, Backus S, Christov I P, Murnane M M, Kapteyn H C, Bartels R A, Liu Y, Attwood D T 2004 Opt. Lett. 29 1357Google Scholar

    [45]

    Rundquist A, Durfee C G, Chang Z H, Herne C, Backus S, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [46]

    Bartels R A, Paul A, Green H, Kapteyn H C, Murnane M M, Backus S, Christov I P, Liu Y W, Attwood D, Jacobsen C 2002 Science 297 376

    [47]

    Zhang X S, Lytle A, Popmintchev T, Paul A, Wagner N, Murnane M, Kapteyn H, Christov I P 2005 Opt. Lett. 30 1971Google Scholar

    [48]

    Lytle A L, Zhang X, Arpin P, Cohen O, Murnane M M, Kapteyn H C, Ieee 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference San Jose, CA, USA, May 4–9 p1984

    [49]

    Corkum P B, Krausz F 2007 Nat. Phys. 3 381

    [50]

    Martin G, Tobias H, Robert K, Alexander K, Chang L, Ziyao W, Mathias L, Christian G, Cesar J, Jose A L, Axel S, Rodrigo A C, Jan R, Jens L Proc. SPIE

    [51]

    Feehan J S, Price J H V, Butcher T J, Brocklesby W S, Frey J G, Richardson D J 2017 Appl. Phys. B 123 43

    [52]

    Hoppe W 1969 Acta Crystallogr. Sect. A 25 508Google Scholar

    [53]

    Robinson I K, Vartanyants I A, Williams G J, Pfeifer M A, Pitney J A 2001 Phys. Rev. Lett. 87 195505Google Scholar

    [54]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795Google Scholar

    [55]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506Google Scholar

    [56]

    Roy S, Parks D, Seu K A, Su R, Turner J J, Chao W, Anderson E H, Cabrini S, Kevan S D 2011 Nat. Photonics 5 243Google Scholar

    [57]

    Bates R H T 1982 Phys. Rep. 90 203Google Scholar

    [58]

    Miao J, Sayre D, Chapman H N 1998 J. Opt. Soc. Am. A 15 1662Google Scholar

    [59]

    Gerchberg R W, Saxton, W. O. 1972 Optik 35 237

    [60]

    Burge R E 1981 Scanning 4 159

    [61]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [62]

    Streibl N 1984 Opt. Commun. 49 6Google Scholar

    [63]

    Teague M R 1983 J. Opt. Soc. Am. A 73 1434Google Scholar

    [64]

    Sayre D 1952 Acta Crystallogr. 5 843

    [65]

    Hoppe W 1969 Acta Crystallogr. Sect. A 25 495Google Scholar

    [66]

    Hoppe W, Strube G 1969 Acta Crystallogr. Sect. A 25 502Google Scholar

    [67]

    Hegerl R, Hoppe W 1972 Proceedings of the 5th European Congress on Electron Microscopy p628

    [68]

    Marchesini S 2007 Rev. Sci. Instrum. 78 011301Google Scholar

    [69]

    Bauschke H H, Combettes P L, Luke D R 2002 J. Opt. Soc. Am. A 19 1334Google Scholar

    [70]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

    [71]

    Pan X C, Liu C, Tao H, Liu H G, Zhu J Q 2020 Acta Optica Sinica 40 111010Google Scholar

    [72]

    Maiden A M, Humphry M J, Rodenburg J M 2012 J. Opt. Soc. Am. A 29 1606

    [73]

    Zhang F, Peterson I, Vila-Comamala J, Berenguer A D F, Bean R, Chen B, Menzel A, Robinson I K, Rodenburg J M 2013 Opt. Express 21 13592Google Scholar

    [74]

    Zheng G, Horstmeyer R, Yang C 2015 Nat. Photonics 9 621Google Scholar

    [75]

    Shanblatt E R, Porter C L, Gardner D F, Mancini G F, Karl R M, Tanksalvala M,Bevis C S, Vartanian V H, Kapteyn H C, Adams D E 2016 Computational Optical Sensing and Imaging 2016 CT4C.1

    [76]

    Raines K S, Salha S, Sandberg R L, Jiang H, Rodriguez J A, Fahimian B P,Kapteyn H C, Du J, Miao J 2010 Nature 463 214

    [77]

    Miao J, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [78]

    Spence J C H, Weierstall U, Howells M 2004 Ultramicroscopy 101 149Google Scholar

    [79]

    Abbey B, Whitehead L W, Quiney H M, Vine D J, Cadenazzi G A, Henderson C A, Nugent K A, Balaur E, Putkunz C T, Peele A G, Williams G J, McNulty I 2011 Nat. Photonics 5 420Google Scholar

    [80]

    Batey D J, Claus D, Rodenburg J M 2014 Ultramicroscopy 138 13Google Scholar

    [81]

    Williams G J, Quiney H M, Peele A G, Nugent K A 2007 Phys. Rev. B 75 4102

    [82]

    Chen B, Dilanian R A, Teichmann S, Abbey B, Peele A, Williams G J, Hannaford P, Dao L V, Quiney H M, Nugent K A 2009 Phys. Rev. A 79 023809Google Scholar

    [83]

    Zhang B, Gardner D F, Seaberg M H, Shanblatt E R, Porter C L, Karl R, Mancuso C A, Kapteyn H C, Murnane M M, Adams D E 2016 Opt. Express 24 18745Google Scholar

    [84]

    Bevis C, Karl R, Reichanadter J, Gardner D F, Porter C, Shanblatt E, Tanksalvala M, Mancini G F, Kapteyn H, Murnane M, Adams D 2018 Ultramicroscopy 184 164Google Scholar

    [85]

    Karl R, Bevis C, Lopez-Rios R, Reichanadter J, Gardner D, Porter C, Shanblatt E, Tanksalvala M, Mancini G F, Murnane M, Kapteyn H, Adams D 2015 Opt. Express 23 30250Google Scholar

    [86]

    Rönsch-Schulenburg J, Faatz B, Honkavaara K, Kuhlmann M, Schreiber S, Treusch R, Vogt M 2017 J. Phys. Conf. Ser. 874 012023Google Scholar

    [87]

    Ellis J L, Dorney K M, Hickstein D D, Brooks N J, Gentry C, Hernández-García C, Zusin D, Shaw J M, Nguyen Q L, Mancuso C A, Matthijs Jansen G S, Witte S, Kapteyn H C, Murnane M M 2018 Optica 5 479Google Scholar

    [88]

    Hirose M, Higashino T, Ishiguro N, Takahashi Y 2020 Opt. Express 28 1216Google Scholar

    [89]

    Yao Y, Jiang Y, Klug J A, Wojcik M, Maxey E R, Sirica N S, Roehrig C, Cai Z, Vogt S, Lai B, Deng J 2020 Sci. Rep. 10 19550Google Scholar

    [90]

    Rokitski R, Sun P C, Fainman Y 2001 Opt. Lett. 26 1125Google Scholar

    [91]

    Beck A, Teboulle M 2009 IEEE Trans. Image Process. 18 2419Google Scholar

    [92]

    Cho A 2012 Science 338 1136Google Scholar

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] 齐乃杰, 何小亮, 吴丽青, 刘诚, 朱健强. 探测器光电特性对叠层相干衍射成像的影响. 物理学报, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [3] 吴迪, 蒋子珍, 喻欢欢, 张晨爽, 张娇, 林丹樱, 于斌, 屈军乐. 基于分数阶螺旋相位片的定量相位显微成像. 物理学报, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [4] 许文慧, 宁守琮, 张福才. 部分相干衍射成像综述. 物理学报, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [5] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [6] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [7] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [8] 李元杰, 何小亮, 孔艳, 王绶玙, 刘诚, 朱健强. 基于电子束剪切干涉的PIE成像技术研究. 物理学报, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [9] 肖俊, 李登宇, 王雅丽, 史祎诗. 并行化叠层成像算法研究. 物理学报, 2016, 65(15): 154203. doi: 10.7498/aps.65.154203
    [10] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究. 物理学报, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [11] 余伟, 何小亮, 刘诚, 朱健强. 非相干照明条件下的ptychographic iterative engine成像技术. 物理学报, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [12] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究. 物理学报, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [13] 王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国. 可见光域叠层成像中照明光束的关键参量研究. 物理学报, 2013, 62(6): 064206. doi: 10.7498/aps.62.064206
    [14] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [15] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [16] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [17] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [18] 王琛, 郑无敌, 方智恒, 孙今人, 王伟, 熊俊, 傅思祖, 顾援, 王世绩, 乔秀梅, 张国平. X射线激光对激光烧蚀薄片靶的阴影成像研究. 物理学报, 2010, 59(7): 4767-4773. doi: 10.7498/aps.59.4767
    [19] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [20] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
计量
  • 文章访问数:  7732
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 修回日期:  2022-07-04
  • 上网日期:  2022-08-08
  • 刊出日期:  2022-08-20

/

返回文章
返回