搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶螺旋相位片的定量相位显微成像

吴迪 蒋子珍 喻欢欢 张晨爽 张娇 林丹樱 于斌 屈军乐

引用本文:
Citation:

基于分数阶螺旋相位片的定量相位显微成像

吴迪, 蒋子珍, 喻欢欢, 张晨爽, 张娇, 林丹樱, 于斌, 屈军乐

Quantitative phase microscopy imaging based on fractional spiral phase plate

Wu Di, Jiang Zi-Zhen, Yu Huan-Huan, Zhang Chen-Shuang, Zhang Jiao, Lin Dan-Ying, Yu Bin, Qu Jun-Le
PDF
HTML
导出引用
  • 螺旋相衬显微术利用螺旋相位滤波器实现了样品振幅和相位的定量测量, 可被广泛应用于生物医学成像、工业检测等领域. 然而, 传统的螺旋相衬显微术需要通过三步相移法进行相位恢复, 图像采集和处理过程相对复杂, 时间分辨率较低. 为了提升其特性, 本文提出了一种基于分数阶螺旋相位片的定量相位成像方法和系统, 通过一幅经分数阶螺旋相位滤波的样品强度图像, 利用改进的Gerchberg-Saxton迭代相位恢复算法实现了样品相位的定量重构, 简化了实验过程和相位重构步骤. 计算机模拟实验研究了基于不同拓扑荷数的螺旋相位片的相位成像和重构过程, 分析了其可行性. 最后, 通过对定制的相位型光栅和生物细胞样品进行了成像和相位重构, 验证了基于分数阶螺旋相位片的相衬显微方法可以有效地提高螺旋相衬显微成像的对比度, 能够定量获其样品的相位信息, 对于螺旋相衬显微术的发展具有重要的研究意义和应用价值.
    Quantitative phase imaging (QPI), which combines phase imaging with optical microscopy technology, provides a marker-free, fast, non-destructive, and high-resolution imaging method for observing transparent biological samples. It is widely used in life science, biomedicine, etc. As an emerging QPI technology, spiral phase contrast microscopy (SPCM) uses a spiral phase filter to achieve edge enhancement of amplitude or phase objects. Using the multi-step phase-shifting technology, a complex sample can be measured quantitatively, which has the advantages of high stability, high sensitivity and high precision. However, the SPCM requires at least three-step phase-shifted spiral phase filtered images to achieve the quantitative reconstruction of the amplitude and phase of a sample, and the image acquisition process and the reconstruction process are relatively complicated, which require high stability of system, and the SPCM has low temporal resolution. In order to further improve the performance of SPCM and increase the system stability, sensitivity and temporal resolution, in this paper a quantitative phase imaging method and system based on a fractional spiral phase plate is proposed. Through a sample intensity image filtered by a fractional spiral phase plate, the modified Gerchberg-Saxton iterative phase retrieval algorithm is used to quantitatively reconstruct the phase of a pure phase sample, which simplifies the experimental process and phase reconstruction steps of spiral phase contrast microsocopy. In the computer simulation experiments, the phase imaging process and the reconstruction process of spiral phase plates based on different topological charges are studied, the feasibility of which is analyzed. Finally, through imaging and phase reconstruction of the phase grating and biological cell sample, it is verified that the phase contrast microscopy method based on the fractional spiral phase plate can effectively improve the contrast of spiral phase contrast microscopy and can obtain a quantitative reconstruciton of a weak phase object. The phase information of a sample has significance in research and application for developing the spiral phase contrast microscopy.
      通信作者: 于斌, yubin@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61975131, 61775144, 61835009)和深圳市基础研究项目(批准号: JCYJ20200109105411133, JCYJ20170412105003520, JCYJ20180305125649693)资助的课题
      Corresponding author: Yu Bin, yubin@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975131, 61775144, 61835009) and the Basic Research Project of Shenzhen, China (Grant Nos. JCYJ20200109105411133, JCYJ20170412105003520, JCYJ20180305125649693)
    [1]

    Park Y, Depeursinge C, Popescu G 2018 Nat. Photonics 12 578Google Scholar

    [2]

    Ikeda T, Popescu G, Dasari R R, Feld M S 2005 Opt. Lett. 30 1165Google Scholar

    [3]

    Marquet P, Rappaz B, Magistretti P J, Cuche E, Emery Y, Colomb T, Depeursinge C 2005 Opt. Lett. 30 468Google Scholar

    [4]

    Warger W C, DiMarzio C A 2009 Opt. Express 17 2400Google Scholar

    [5]

    Zicha D, Dunn G A 1995 J. Microsc.-Oxford 179 11Google Scholar

    [6]

    Popescu G, Deflores L P, Vaughan J C, Badizadegan K, Iwai H, Dasari R R, Feld M S 2004 Opt. Lett. 29 2503Google Scholar

    [7]

    Popescu G, Ikeda T, Dasari R R, Feld M S 2006 Opt. Lett. 31 775Google Scholar

    [8]

    Barty A, Nugent K A, Paganin D, Roberts A 1998 Opt. Lett. 23 817Google Scholar

    [9]

    Wang Z, Millet L, Mir M, Ding H F, Unarunotai S, Rogers J, Gillette M U, Popescu G 2011 Opt. Express 19 1016Google Scholar

    [10]

    Ding H F, Wang Z, Nguyen F, Boppart S A, Popescu G 2008 Phys. Rev. Lett. 101 238102Google Scholar

    [11]

    Davis J A, McNamara D E, Cottrell D M, Campos J 2000 Opt. Lett. 25 99Google Scholar

    [12]

    Crabtree K, Davis J A, Moreno I 2004 Appl. Opt. 43 1360Google Scholar

    [13]

    Swartzlander G A 2001 Opt. Lett. 26 497Google Scholar

    [14]

    刘婷婷, 洪正平, 国承山 2008 光电子·激光 19 96Google Scholar

    Liu T T, Hong Z P, Guo C S 2008 J. Optoelectron.·Laser 19 96Google Scholar

    [15]

    Furhapter S, Jesacher A, Bernet S, Ritsch-Marte M 2005 Opt. Lett. 30 1953Google Scholar

    [16]

    Wang J, Zhang W, Qi Q, Zheng S, Chen L 2015 Sci. Rep. 5 15826Google Scholar

    [17]

    顾忠政, 殷达, 聂守平, 冯少彤, 邢芳俭, 马骏, 袁操今 2019 红外与激光工程 48 0603015Google Scholar

    Gu Z Z, Yin D, Nie S P, Feng S T, Xing F J, Ma J, Yuan C J 2019 Infrared Laser Eng. 48 0603015Google Scholar

    [18]

    Situ G, Pedrini G, Osten W 2009 J. Opt. Soc. Am. A: 26 1788Google Scholar

    [19]

    Hai N, Rosen J 2020 Opt. Lett. 45 5812Google Scholar

    [20]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [21]

    周意 2017 硕士学位论文 (南京: 南京师范大学)

    Zhou Y 2017 M. S. Thesis (Nanjing: Nanjing Normal University) (in Chinese)

    [22]

    黄妙娜, 黄佐华 2009 大学物理 28 6Google Scholar

    Huang M N, Huang Z H 2009 Coll. Phys. 28 6Google Scholar

  • 图 1  基于4f系统的螺旋相衬成像系统示意图

    Fig. 1.  Schematic diagram of 4f system-based spiral phase contrast imaging system.

    图 2  SGSA框图

    Fig. 2.  Block diagram of the SGSA.

    图 3  分数阶拓扑荷取0.1时, SSE随迭代次数的变化曲线

    Fig. 3.  SSE error vs. the number of iterations when the fractional topological charge is 0.1.

    图 4  恢复相位与真实相位之间的MSE随迭代次数的变化曲线

    Fig. 4.  MSE error between the recovered phase image and ground truth phase image vs. the number of iterations.

    图 5  螺旋相位滤波成像及恢复结果对比 (a) 相位型样品原图; (b) 传统整数阶螺旋相位片滤波图像; (c) 对图(b)用SGSA恢复的样品相位图; (d) 分数阶螺旋相位片滤波图像; (e) 对图(d)用SGSA恢复的样品相位图

    Fig. 5.  Comparisons of the recorded images and the recovered results: (a) The ground truth phase sample image; (b) the recorded image via traditional integer order spiral phase plate filtering; (c) the recovered phase sample image using SGSA for panel (b); (d) the recorded image via fractional spiral phase plate filtering; (e) the recovered phase sample image using SGSA for panel (d).

    图 6  分数拓扑荷l取不同值时的直接相位成像结果 $\left( {\rm{a}} \right)\;l = 1$; $\left( {\rm{b}} \right)\;l = {\rm{0}}.{\rm{8}}$; $\left( {\rm{c}} \right)\;l = {\rm{0}}.{\rm{6}}$; $\left( {\rm{d}} \right)\;l = {\rm{0}}.{\rm{5}}$; $\left( {\rm{e}} \right)\;l = {\rm{0}}.{\rm{4}}$; $\left( {\rm{f}} \right)\;l = {\rm{0}}.{\rm{2}}$; $\left( {\rm{g}} \right)\;l = {\rm{0}}.1$; $\left( {\rm{h}} \right)\;l = {\rm{0}}.{\rm{08}}$

    Fig. 6.  Direct phase imaging results for different fractional topological charge l : $\left( {\rm{a}} \right)\;l = 1{{ ;}}$ $\left( {\rm{b}} \right)\;l = {\rm{0}}.{{8 ;}}$ $\left( {\rm{c}} \right)\;l = {\rm{0}}.{{6 ;}}$ $\left( {\rm{d}} \right)\;l = {\rm{0}}.{{5 ;}}$ $\left( {\rm{e}} \right)\;l = {\rm{0}}.{\rm{4}}$; $\left( {\rm{f}} \right)\;l = {\rm{0}}.{\rm{2}}$; $\left( {\rm{g}} \right)\;l = {\rm{0}}.1$; $\left( {\rm{h}} \right)\;l = {\rm{0}}.{\rm{08}}$.

    图 7  不同拓扑荷值恢复结果对比 (a) 拓扑荷取0.1时经SGSA恢复出的相位图; (b) 拓扑荷取0.08时经SGSA恢复出的相位图

    Fig. 7.  Comparisons of the recovered results for different topologies: (a) The reovered phase image using SGSA when the topology is 0.1; (b) the revoverd phase image using SGSA when the topology is 0.08.

    图 8  (a) 相位型闪耀光栅; (b) 螺旋相位片; (c) 复合螺旋相位图

    Fig. 8.  (a) Phase-type blazed grating; (b) spiral phase plate; (c) composite spiral phase plate.

    图 9  (a) 基于螺旋相位片滤波的定量相位成像系统光路图; (b) SLM上加载的整数阶叉形光栅; (c) SLM上加载的分数阶叉形光栅

    Fig. 9.  (a) Optical setup of quantitative phase imaging system based on a spiral phase filter; (b) the integer order fork grating loaded on SLM; (c) the fractional fork grating loaded on SLM.

    图 10  定制相位型光栅的成像 (a) 相位型光栅未滤波明场强度图; (b) 整数阶螺旋相位片滤波成像边缘增强图; (c) 恢复相位图; (d) 恢复深度图, 横纵坐标数值为像素值, 每个像素代表0.325 μm, 总长度为332.8 μm

    Fig. 10.  Imaging of a custom phase gratinig: (a) The unfiltered bright field image of the phase grating; (b) the recorded integer-order spiral phase filtered edge enhancement image; (c) the recovered phase image; (d) the recovered depth image, the abscissa and ordinate values are pixel values, each pixel represents 0.325 μm, and the total length is 332.8 μm.

    图 11  经整数阶螺旋相位片滤波后再由SGSA重构的相位型光栅SSE随迭代次数的变化

    Fig. 11.  SSE error vs. the number of iterations for the grating phase reconstruction problem of phase retrieval from a integer-order spiral phase filtering intensity measurement using the SGSA.

    图 12  定制相位型光栅的成像 (a) 相位型光栅未滤波明场强度图; (b) 拓扑荷l取0.1时分数阶螺旋相位片滤波成像强度图; (c) 恢复相位图; (d) 恢复深度图(坐标同图10(d))

    Fig. 12.  Imaging of a custom phase grating: (a) The unfiltered phase grating bright field image; (b) the fractional spiral phase plate filtered image when the topological charge l is 0.1; (c) the recovered phase image; (d) the recovered depth image (the coordinates are the same as Fig. 10. (d)).

    图 13  经分数阶螺旋相位片滤波后再由SGSA重构的相位光栅SSE随迭代次数的变化

    Fig. 13.  SSE error vs. the number of iterations for the grating phase reconstruction problem of phase retrieval from a fractional spiral phase filtering intensity measurement using the SGSA.

    图 14  SH-SY5Y细胞成像 (a) SH-SY5Y细胞未滤波明场强度图; (b) 拓扑荷l取0.1时分数阶螺旋相位片滤波神经元细胞成像强度图; (c) 恢复相位图; (d) 定量相移图(坐标同图10(d))

    Fig. 14.  SH-SY5Y cell imaging: (a) The unfiltered SH-SY5Y cell bright field image; (b) the intensity image of the neuron cell using the fractional spiral phase filter when the topological charge l is 0.1; (c) the recoverd phase image; (d) the quantitative phase image (the coordinates are the same as Fig. 10. (d)).

    图 15  SH-SY5Y细胞经分数阶螺旋相位滤波后再由SGSA重建的SSE随迭代次数的变化

    Fig. 15.  SSE error vs. the number of iterations for the SH-SY5Y cells reconstruction problem of phase retrieval from a fractional spiral phase filtering intensity measurement using the SGSA.

    表 1  三种分数拓扑荷下恢复相位图与原图的SSIM值

    Table 1.  The SSIM between the recovered phase image and the ground truth phase image for three fractional topological values.

    拓扑荷取值SSIM
    1.00.1918
    0.10.4394
    0.080.2034
    下载: 导出CSV
  • [1]

    Park Y, Depeursinge C, Popescu G 2018 Nat. Photonics 12 578Google Scholar

    [2]

    Ikeda T, Popescu G, Dasari R R, Feld M S 2005 Opt. Lett. 30 1165Google Scholar

    [3]

    Marquet P, Rappaz B, Magistretti P J, Cuche E, Emery Y, Colomb T, Depeursinge C 2005 Opt. Lett. 30 468Google Scholar

    [4]

    Warger W C, DiMarzio C A 2009 Opt. Express 17 2400Google Scholar

    [5]

    Zicha D, Dunn G A 1995 J. Microsc.-Oxford 179 11Google Scholar

    [6]

    Popescu G, Deflores L P, Vaughan J C, Badizadegan K, Iwai H, Dasari R R, Feld M S 2004 Opt. Lett. 29 2503Google Scholar

    [7]

    Popescu G, Ikeda T, Dasari R R, Feld M S 2006 Opt. Lett. 31 775Google Scholar

    [8]

    Barty A, Nugent K A, Paganin D, Roberts A 1998 Opt. Lett. 23 817Google Scholar

    [9]

    Wang Z, Millet L, Mir M, Ding H F, Unarunotai S, Rogers J, Gillette M U, Popescu G 2011 Opt. Express 19 1016Google Scholar

    [10]

    Ding H F, Wang Z, Nguyen F, Boppart S A, Popescu G 2008 Phys. Rev. Lett. 101 238102Google Scholar

    [11]

    Davis J A, McNamara D E, Cottrell D M, Campos J 2000 Opt. Lett. 25 99Google Scholar

    [12]

    Crabtree K, Davis J A, Moreno I 2004 Appl. Opt. 43 1360Google Scholar

    [13]

    Swartzlander G A 2001 Opt. Lett. 26 497Google Scholar

    [14]

    刘婷婷, 洪正平, 国承山 2008 光电子·激光 19 96Google Scholar

    Liu T T, Hong Z P, Guo C S 2008 J. Optoelectron.·Laser 19 96Google Scholar

    [15]

    Furhapter S, Jesacher A, Bernet S, Ritsch-Marte M 2005 Opt. Lett. 30 1953Google Scholar

    [16]

    Wang J, Zhang W, Qi Q, Zheng S, Chen L 2015 Sci. Rep. 5 15826Google Scholar

    [17]

    顾忠政, 殷达, 聂守平, 冯少彤, 邢芳俭, 马骏, 袁操今 2019 红外与激光工程 48 0603015Google Scholar

    Gu Z Z, Yin D, Nie S P, Feng S T, Xing F J, Ma J, Yuan C J 2019 Infrared Laser Eng. 48 0603015Google Scholar

    [18]

    Situ G, Pedrini G, Osten W 2009 J. Opt. Soc. Am. A: 26 1788Google Scholar

    [19]

    Hai N, Rosen J 2020 Opt. Lett. 45 5812Google Scholar

    [20]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [21]

    周意 2017 硕士学位论文 (南京: 南京师范大学)

    Zhou Y 2017 M. S. Thesis (Nanjing: Nanjing Normal University) (in Chinese)

    [22]

    黄妙娜, 黄佐华 2009 大学物理 28 6Google Scholar

    Huang M N, Huang Z H 2009 Coll. Phys. 28 6Google Scholar

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] 齐乃杰, 何小亮, 吴丽青, 刘诚, 朱健强. 探测器光电特性对叠层相干衍射成像的影响. 物理学报, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [3] 王子硕, 刘磊, 刘晨博, 刘珂, 钟志, 单明广. 数字差分-积分快速相位解包裹算法研究. 物理学报, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [4] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [5] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [6] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211509
    [7] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [8] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [9] 孙腾飞, 卢鹏, 卓壮, 张文浩, 卢景琦. 基于单一分光棱镜干涉仪的双通路定量相位显微术. 物理学报, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [10] 李元杰, 何小亮, 孔艳, 王绶玙, 刘诚, 朱健强. 基于电子束剪切干涉的PIE成像技术研究. 物理学报, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [11] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [12] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成. 物理学报, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [13] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [14] 刘宏展, 纪越峰. 一种基于角谱理论的改进型相位恢复迭代算法. 物理学报, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [15] 杨振亚, 郑楚君. 基于压缩传感的纯相位物体相位恢复. 物理学报, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [16] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [17] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [18] 刘慧强, 任玉琦, 周光照, 和友, 薛艳玲, 肖体乔. 相移吸收二元性算法用于X射线混合衬度定量显微CT的可行性研究. 物理学报, 2012, 61(7): 078701. doi: 10.7498/aps.61.078701
    [19] 黄燕萍, 祁春媛. 用相位恢复方法测量多孔光纤的三维折射率分布. 物理学报, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
计量
  • 文章访问数:  5694
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 修回日期:  2021-03-22
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回