搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单一分光棱镜干涉仪的双通路定量相位显微术

孙腾飞 卢鹏 卓壮 张文浩 卢景琦

引用本文:
Citation:

基于单一分光棱镜干涉仪的双通路定量相位显微术

孙腾飞, 卢鹏, 卓壮, 张文浩, 卢景琦

Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer

Sun Teng-Fei, Lu Peng, Zhuo Zhuang, Zhang Wen-Hao, Lu Jing-Qi
PDF
导出引用
  • 仅仅使用一个单独的分光棱镜(BS),实现了一种用于生物细胞三维成像的双通路定量相位显微术.不同于传统的使用方法,将BS倾斜放置,使中央半反射层与入射光光轴之间存在一个非常小的角度.这样基于BS的分光特性,经过BS后的透射光束和反射光束将会叠加在一起并形成干涉.调节样品位置,利用相机拍摄同时获得了存在π相移的双通路干涉图.这种离轴干涉模式,只需要记录单幅干涉图就可以获得真实的相位信息,方法结构简单,易于操作,适用于微小透明样品的三维形貌测量.
    Quantitative phase microscopy, as a non-destructive and non-invasive measurement technique, can indirectly reflect three-dimensional (3D) morphology and optical properties of transparent microstructure object by measuring phase information. In recent years, this kind of technique has been widely used to detect and investigate the characteristics of biological cells and it has become more and more important in the field of modern biomedical and life science. In this paper, only by using a single cube beamsplitter interferometer, a simple single-shot dual-channel quantitative phase microscopic measurement technique is demonstrated for 3D quantitative phase imaging of biological cells. In the proposed method, a conventional non-polarized cube beamsplitter is the most pivotal element. Unlike its traditional application method, the cube beamsplitter is tilted in a nonconventional configuration and the illumination beam is only incident on the left (or right) half of the cube beamsplitter (just the one side of central semi-reflecting layer), and a very small angle is introduced between the central semi-reflecting layer and the optical axis of incident beam. Based on the light splitting characteristic of the cube beamsplitter, two replicas of incident beam are generated. These two generated replicas (transmission beam and reflection beam) are of symmetry with respect to each other, and they will encounter and form interference when the direction of the incident beam meets a certain condition. Adjust the sample to a suitable position and make it only contact one half of incident beam, and the modulated beam will be seen as the object beam and the remaining clean half of incident beam as the reference beam. When the interference phenomenon occurs, two interference channels with a relative π (rad) phase-shift in one interferogram are acquired simultaneously only using one digital camera, and the higher spatial frequency of interference fringes can be achieved by adjusting a relatively big angle between the central semi-reflecting layer and the optical axis of incident beam. Because of the off-axis interference mode, we only need to record one interferogram to gain the continuous phase information and avoid using complex phase-shift techniques. At the same time, this proposed method is of simple structure and easy to operate due to using less ordinary off-the-shelf optical elements. All these simplify the structure of the system and reduce the cost of the system as much as possible. Finally, the phase information of paramecium is successfully obtained from different interference channels respectively. Furthermore, according to the characteristic of π (rad) phase-shift, we also realize the calibration and determination of ultimate precise phase information of sample by using the method of averaging between these two channels. The experimental results show that our proposed method is suitable for 3D surface morphology measurement of small transparent samples.
      通信作者: 卢景琦, Lu618@sdu.edu.cn
    • 基金项目: 山东省自然科学杰出青年基金(批准号:2013JQE27056)和山东省重点研发计划(批准号:2016GSF121023)资助的课题.
      Corresponding author: Lu Jing-Qi, Lu618@sdu.edu.cn
    • Funds: Project supported by the Shandong Provincial Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 2013JQE27056) and the Shandong Provincial Key Research and Development Program, China (Grant No. 2016GSF121023).
    [1]

    Li J C, Lou Y L, Gui J B, Peng Z J, Song Q H 2013 Acta Phys. Sin. 62 124203 (in Chinese) [李俊昌, 楼宇丽, 桂进斌, 彭祖杰, 宋庆和 2013 物理学报 62 124203]

    [2]

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208 (in Chinese) [王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞 2012 物理学报 61 044208]

    [3]

    Marquet P, Depeursinge C, Magistretti P J 2014 Neurophotonics 1 020901

    [4]

    Marquet P, Rothenfusser K, Rappaz B, Depeursinge C, Jourdain P, Magistretti P J 2016 Proc. SPIE 9718 97180K

    [5]

    Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 054208 (in Chinese) [王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强 2013 物理学报 62 054208]

    [6]

    Li J C 2012 Acta Phys. Sin. 61 134203 (in Chinese) [李俊昌 2012 物理学报 61 134203]

    [7]

    Mir M, Tangella K, Popescu G 2011 Biomed. Opt. Express 2 3259

    [8]

    Shaked N T 2012 Opt. Lett. 37 2016

    [9]

    Anand A, Faridian A, Chhaniwal V, Mahajan S, Trivedi V, Dubey S K, Pedrini G, Osten W, Javidi B 2014 Appl. Phys. Lett. 104 103705

    [10]

    Mahajan S, Trivedi V, Vora P, Chhaniwal V, Javidi B, Anand A 2015 Opt. Lett. 40 3743

    [11]

    Coquoz S, Nahas A, Sison M, Lopez A, Lasser T 2016 J. Biomed. Opt. 21 126019

    [12]

    Di J L, Li Y, Xie M, Zhang J W, Ma C J, Xi T L, Li E P, Zhao J L 2016 Appl. Opt. 55 7287

    [13]

    Ma C J, Li Y, Zhang J W, Li P, Xi T L, Di J L, Zhao J L 2017 Opt. Express 25 13659

    [14]

    Zhang J W, Dai S Q, Ma C J, Di J L, Zhao J L 2017 Appl. Opt. 56 3223

    [15]

    Chhaniwal V, Singh A S G, Leitgeb R A, Javidi B, Anand A 2012 Opt. Lett. 37 5127

    [16]

    Yuan F, Yuan C J, Nie S P, Zhu Z Q, Ma Q Y, Li Y, Zhu W Y, Feng S T 2014 Acta Phys. Sin. 63 104207 (in Chinese) [袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤 2014 物理学报 63 104207]

    [17]

    Singh A S G, Anand A, Leitgeb R A, Javidi B 2012 Opt. Express 20 23617

    [18]

    Lue N, Kang J W, Hillman T R, Dasari R R, Yaqoob Z 2012 Appl. Phys. Lett. 101 084101

    [19]

    Qu W J, Bhattacharya K, Choo C O, Yu Y J, Asundi A 2009 Appl. Opt. 48 2778

    [20]

    Gabai H, Shaked N T 2012 Opt. Express 20 26906

    [21]

    Lan B, Feng G Y, Zhang T, Liang J C, Zhou S H 2017 Acta Phys. Sin. 66 069501 (in Chinese) [兰斌, 冯国英, 张涛, 梁井川, 周寿桓 2017 物理学报 66 069501]

    [22]

    Takeda M, Ina H, Kobayashi S 1982 J. Opt. Soc. Am. 72 156

    [23]

    Cuche E, Marquet P, Depeursinge C 2000 Appl. Opt. 39 4070

  • [1]

    Li J C, Lou Y L, Gui J B, Peng Z J, Song Q H 2013 Acta Phys. Sin. 62 124203 (in Chinese) [李俊昌, 楼宇丽, 桂进斌, 彭祖杰, 宋庆和 2013 物理学报 62 124203]

    [2]

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208 (in Chinese) [王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞 2012 物理学报 61 044208]

    [3]

    Marquet P, Depeursinge C, Magistretti P J 2014 Neurophotonics 1 020901

    [4]

    Marquet P, Rothenfusser K, Rappaz B, Depeursinge C, Jourdain P, Magistretti P J 2016 Proc. SPIE 9718 97180K

    [5]

    Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 054208 (in Chinese) [王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强 2013 物理学报 62 054208]

    [6]

    Li J C 2012 Acta Phys. Sin. 61 134203 (in Chinese) [李俊昌 2012 物理学报 61 134203]

    [7]

    Mir M, Tangella K, Popescu G 2011 Biomed. Opt. Express 2 3259

    [8]

    Shaked N T 2012 Opt. Lett. 37 2016

    [9]

    Anand A, Faridian A, Chhaniwal V, Mahajan S, Trivedi V, Dubey S K, Pedrini G, Osten W, Javidi B 2014 Appl. Phys. Lett. 104 103705

    [10]

    Mahajan S, Trivedi V, Vora P, Chhaniwal V, Javidi B, Anand A 2015 Opt. Lett. 40 3743

    [11]

    Coquoz S, Nahas A, Sison M, Lopez A, Lasser T 2016 J. Biomed. Opt. 21 126019

    [12]

    Di J L, Li Y, Xie M, Zhang J W, Ma C J, Xi T L, Li E P, Zhao J L 2016 Appl. Opt. 55 7287

    [13]

    Ma C J, Li Y, Zhang J W, Li P, Xi T L, Di J L, Zhao J L 2017 Opt. Express 25 13659

    [14]

    Zhang J W, Dai S Q, Ma C J, Di J L, Zhao J L 2017 Appl. Opt. 56 3223

    [15]

    Chhaniwal V, Singh A S G, Leitgeb R A, Javidi B, Anand A 2012 Opt. Lett. 37 5127

    [16]

    Yuan F, Yuan C J, Nie S P, Zhu Z Q, Ma Q Y, Li Y, Zhu W Y, Feng S T 2014 Acta Phys. Sin. 63 104207 (in Chinese) [袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤 2014 物理学报 63 104207]

    [17]

    Singh A S G, Anand A, Leitgeb R A, Javidi B 2012 Opt. Express 20 23617

    [18]

    Lue N, Kang J W, Hillman T R, Dasari R R, Yaqoob Z 2012 Appl. Phys. Lett. 101 084101

    [19]

    Qu W J, Bhattacharya K, Choo C O, Yu Y J, Asundi A 2009 Appl. Opt. 48 2778

    [20]

    Gabai H, Shaked N T 2012 Opt. Express 20 26906

    [21]

    Lan B, Feng G Y, Zhang T, Liang J C, Zhou S H 2017 Acta Phys. Sin. 66 069501 (in Chinese) [兰斌, 冯国英, 张涛, 梁井川, 周寿桓 2017 物理学报 66 069501]

    [22]

    Takeda M, Ina H, Kobayashi S 1982 J. Opt. Soc. Am. 72 156

    [23]

    Cuche E, Marquet P, Depeursinge C 2000 Appl. Opt. 39 4070

  • [1] 王子硕, 刘磊, 刘晨博, 刘珂, 钟志, 单明广. 数字差分-积分快速相位解包裹算法研究. 物理学报, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [2] 孙思彤, 丁应星, 刘伍明. 基于线性与非线性干涉仪的量子精密测量研究进展. 物理学报, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [3] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [4] 高兆琳, 刘瑞桦, 温凯, 马英, 李建郎, 郜鹏. 结构光照明相位/荧光双模式显微技术. 物理学报, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [5] 吴迪, 蒋子珍, 喻欢欢, 张晨爽, 张娇, 林丹樱, 于斌, 屈军乐. 基于分数阶螺旋相位片的定量相位显微成像. 物理学报, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [6] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211509
    [7] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [8] 何江涛, 何文奇, 廖美华, 卢大江, 彭翔. 一种基于双光束干涉和非线性相关的身份认证方法. 物理学报, 2017, 66(4): 044202. doi: 10.7498/aps.66.044202
    [9] 李元杰, 何小亮, 孔艳, 王绶玙, 刘诚, 朱健强. 基于电子束剪切干涉的PIE成像技术研究. 物理学报, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [10] 贺寅竹, 赵世杰, 尉昊赟, 李岩. 跨尺度亚纳米分辨的可溯源外差干涉仪. 物理学报, 2017, 66(6): 060601. doi: 10.7498/aps.66.060601
    [11] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [12] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [13] 何文奇, 彭翔, 孟祥锋, 刘晓利. 一种基于双光束干涉的分级身份认证方法. 物理学报, 2013, 62(6): 064205. doi: 10.7498/aps.62.064205
    [14] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [15] 刘宏展, 纪越峰. 一种基于角谱理论的改进型相位恢复迭代算法. 物理学报, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [16] 杨振亚, 郑楚君. 基于压缩传感的纯相位物体相位恢复. 物理学报, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [17] 刘慧强, 任玉琦, 周光照, 和友, 薛艳玲, 肖体乔. 相移吸收二元性算法用于X射线混合衬度定量显微CT的可行性研究. 物理学报, 2012, 61(7): 078701. doi: 10.7498/aps.61.078701
    [18] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪. 物理学报, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [19] 黄燕萍, 祁春媛. 用相位恢复方法测量多孔光纤的三维折射率分布. 物理学报, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
计量
  • 文章访问数:  5858
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-22
  • 修回日期:  2018-04-09
  • 刊出日期:  2019-07-20

/

返回文章
返回