搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究

许新科 刘国栋 刘炳国 陈凤东 庄志涛 甘雨

引用本文:
Citation:

基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究

许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨

High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation

Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu
PDF
导出引用
  • 为了实现更高分辨率的激光频率扫描干涉测量, 增大光源的扫频范围以及减小扫描频率的非线性成为关键. 采用外腔式大带宽扫频光源结合光纤辅助干涉仪构建的外部时钟频率采样非线性校正是目前较为常用的方法. 本研究发现随着扫频带宽和测量范围的增加, 光纤辅助干涉仪与测量光路中存在的色散失配导致频谱出现严重展宽, 极大的降低了测量的分辨率. 本文建立了辅助干涉仪和测量干涉仪色散失配影响的理论模型, 利用该模型分析了扫频带宽和测量范围与测量分辨率的变化关系, 与实验结果相一致, 并进而提出了基于峰值演化消畸变的色散相位补偿方法, 有效地提高了测量的分辨率, 在2.53 m 处实现了接近理论值的64.5 m的测量分辨率. 该色散失配模型及补偿方法为提高大尺寸激光频率扫描干涉仪的测量分辨率及测距范围提供了参考.
    The laser frequency scanning interferometer has several advantages, such as non-contact, high accuracy and low signal to noise ratio in detection. In order to achieve higher resolution of the laser frequency scanning interferometer, increasing the tuning range of the light source and reducing the tuning non-linearity have become the key factors. The commonly used method is to correct the non-linearity of the wide bandwidth external cavity tuning laser by a fiber optical auxiliary interferometer constructed external frequency sampling clock. When using the broadband external cavity tuning laser and the auxiliary interferometer with an optical path difference of 220 m, it is found experimentally that the single-mode fiber dispersion makes the frequency of sampled signals change over time, causing the spectrum to broaden and resolution to decline. This paper has established the dispersion mismatch model which shows that the fiber dispersion of the auxiliary interferometer causes linear chirp frequency changes during the measurement of signals. The linear chirp frequency is proportional to the tuning bandwidth and measured distance. The phenomenon and theoretical model of dispersion mismatch is verified by experiments. The results for targets in the air are shown to linearly decrease as the tuning range increases with the maximum offset of 156.3 µm for the 20 nm tuning bandwidth. The experiment also proves the peak broadening intensifies with increasing distance measured, and thus verifies as the time delay of free space increase, and the peak broadening and distortion also increases. This result means that it will limit the ranging distance and make large errors in measurement result for long distance targets. The dispersion of the auxiliary interferometer should be compensated in the laser frequency scanning interferometer for large-sized high resolution measurements. In this paper, phase dispersion compensation method based on the evolution of peak variation distortion elimination is proposed, by taking the peak amplitude variation as the criterion; the phase compensation can offset the dispersion and improve the resolution. The original signal is multiplied by the complex phase compensation term, then regulating the phase compensation factor, the chirp becomes smaller as the phase compensation factor is approaching the distortion factor. Under the condition that the phase compensation factor is equal to the distortion factor, the chirp is offset. Then, the relationship between the amplitude and the peak FWHM is studied. It is found that the peak FWHM decreases while the amplitude shows a gradually increasing trend. Therefore, the amplitude can be referred to in order to determine whether the peak FWHM reaches the minimum. The resolution for target's peak can be improved by searching for the maximum amplitude of the spectrum and adjusting the phase distortion coefficient. The experiment shows that the peak FWHM of the target is obviously narrowed after dispersion compensation. The peak value becomes close to the theoretical resolution, and the static target at a distance of 975.216254 mm from the laser frequency scanning interferometer is measured. Results show the measurement accuracy of the interferometer is 584 nm. To further verify the accuracy of the laser frequency scanning interferometer, the laser frequency scanning interferometer is compared with the Renishaw laser interferometer in the measurement range of 0692 mm. The standard deviation between them is 4.5 m. The proposed method is put forward to provide basis for future studies on the large size high resolution laser frequency scanning interferometer.
      通信作者: 甘雨, ganyu@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51275120, 61275096)资助的课题.
      Corresponding author: Gan Yu, ganyu@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51275120, 61275096).
    [1]

    Tan L Q, Hua D X, Wang L, Gao F, Di H G 2014 Acta Phys. Sin. 63 224205 (in Chinese) [谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽 2014 物理学报 63 224205]

    [2]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2014 Chin. Phys. B 23 110703

    [3]

    Wen X D, Ning T G, You H D, Kang Z X, Li J, Li C, Feng T, Yu S W, Jian W 2014 Chin. Phys. Lett. 31 034203

    [4]

    Zhang R W, Sun X J, Yan W, Liu L, Li Y, Zhao J, Yan W X, Li H R 2014 Acta Phys. Sin. 63 140702 (in Chinese) [张日伟, 孙学金, 严卫, 刘磊, 李岩, 赵剑, 颜万祥, 李浩然 2014 物理学报 63 140702]

    [5]

    Eric D M, Robert R M 2008 Opt. Express 16 13139

    [6]

    John D, Ben H, Andrew J L, Andrew J L, Armin J H R, Matthew S W 2014 Opt. Express 22 24869

    [7]

    Tao L, Liu Z G, L T, Deng Z W, Gong H 2014 Acta Optica Sinica34 0212002 (in Chinese) [陶龙, 刘志刚, 吕涛, 邓忠文, 龚海 2014 光学学报 34 0212002]

    [8]

    Yan X, Dong J Q, Li Q H, Guo M S, Hu Y Q 2014 Chinese Journal of Lasers41 0908001 (in Chinese) [严鑫, 董俊卿, 李青会, 郭木森, 胡永庆 2014 中国激光 41 0908001]

    [9]

    Koichi I, Shin-ichiro M, Takao K, Takeo M 2011 IEEE Photon. Technol. Lett. 23 703

    [10]

    Ana B M, Zeb W B 2015 Appl. Opt. 54 5911

    [11]

    Brian J S, Dawn K G, Matthew S W, Mark E F 2005 Opt. Express 13 666

    [12]

    Zhao C, Chen Z Y, Ding Z H, Li P, Shen Y, Ni Y 2014 Acta Phys. Sin. 63 194201 (in Chinese) [赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧 2014 物理学报 63 194201]

    [13]

    Zeb W B, Wm R B, Brant K, Randy R R, Peter A R 2010 Appl. Opt. 49 213

    [14]

    Yusuke K, Fan X Y, Fumihiko I, He Z Y, Kazuo H 2013 J. Lightw. Technol. 31 866

    [15]

    Evan M L, Justin W K, Mark E F, Emily E H US Patent 105911[2014-07-03]

    [16]

    Maciej W, Vivek J S, Tony H K, James G F, Andrzej K, Jay S D 2004 Opt. Express 12 2404

  • [1]

    Tan L Q, Hua D X, Wang L, Gao F, Di H G 2014 Acta Phys. Sin. 63 224205 (in Chinese) [谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽 2014 物理学报 63 224205]

    [2]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2014 Chin. Phys. B 23 110703

    [3]

    Wen X D, Ning T G, You H D, Kang Z X, Li J, Li C, Feng T, Yu S W, Jian W 2014 Chin. Phys. Lett. 31 034203

    [4]

    Zhang R W, Sun X J, Yan W, Liu L, Li Y, Zhao J, Yan W X, Li H R 2014 Acta Phys. Sin. 63 140702 (in Chinese) [张日伟, 孙学金, 严卫, 刘磊, 李岩, 赵剑, 颜万祥, 李浩然 2014 物理学报 63 140702]

    [5]

    Eric D M, Robert R M 2008 Opt. Express 16 13139

    [6]

    John D, Ben H, Andrew J L, Andrew J L, Armin J H R, Matthew S W 2014 Opt. Express 22 24869

    [7]

    Tao L, Liu Z G, L T, Deng Z W, Gong H 2014 Acta Optica Sinica34 0212002 (in Chinese) [陶龙, 刘志刚, 吕涛, 邓忠文, 龚海 2014 光学学报 34 0212002]

    [8]

    Yan X, Dong J Q, Li Q H, Guo M S, Hu Y Q 2014 Chinese Journal of Lasers41 0908001 (in Chinese) [严鑫, 董俊卿, 李青会, 郭木森, 胡永庆 2014 中国激光 41 0908001]

    [9]

    Koichi I, Shin-ichiro M, Takao K, Takeo M 2011 IEEE Photon. Technol. Lett. 23 703

    [10]

    Ana B M, Zeb W B 2015 Appl. Opt. 54 5911

    [11]

    Brian J S, Dawn K G, Matthew S W, Mark E F 2005 Opt. Express 13 666

    [12]

    Zhao C, Chen Z Y, Ding Z H, Li P, Shen Y, Ni Y 2014 Acta Phys. Sin. 63 194201 (in Chinese) [赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧 2014 物理学报 63 194201]

    [13]

    Zeb W B, Wm R B, Brant K, Randy R R, Peter A R 2010 Appl. Opt. 49 213

    [14]

    Yusuke K, Fan X Y, Fumihiko I, He Z Y, Kazuo H 2013 J. Lightw. Technol. 31 866

    [15]

    Evan M L, Justin W K, Mark E F, Emily E H US Patent 105911[2014-07-03]

    [16]

    Maciej W, Vivek J S, Tony H K, James G F, Andrzej K, Jay S D 2004 Opt. Express 12 2404

  • [1] 孙思彤, 丁应星, 刘伍明. 基于线性与非线性干涉仪的量子精密测量研究进展. 物理学报, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [2] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距. 物理学报, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [3] 黄军超, 汪凌珂, 段怡菲, 黄亚峰, 刘亮, 李唐. 光纤1/f 热噪声的实验研究. 物理学报, 2019, 68(5): 054205. doi: 10.7498/aps.68.20181838
    [4] 黄科, 李松, 马跃, 田昕, 周辉, 张智宇. 单光子激光测距的漂移误差理论模型及补偿方法. 物理学报, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [5] 孙腾飞, 卢鹏, 卓壮, 张文浩, 卢景琦. 基于单一分光棱镜干涉仪的双通路定量相位显微术. 物理学报, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [6] 贺寅竹, 赵世杰, 尉昊赟, 李岩. 跨尺度亚纳米分辨的可溯源外差干涉仪. 物理学报, 2017, 66(6): 060601. doi: 10.7498/aps.66.060601
    [7] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展. 物理学报, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [8] 肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元, 于洋, 薛纪强. 二次偏振调制测距系统中调制频率与测距精度的关系. 物理学报, 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [9] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [10] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [11] 王峰, 彭晓世, 薛全喜, 徐涛, 魏惠月. 基于神光III原型的整形激光直接驱动准等熵压缩实验研究. 物理学报, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [12] 黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强. 基于二次偏振调制的变频测距方法与系统实现. 物理学报, 2014, 63(10): 100602. doi: 10.7498/aps.63.100602
    [13] 王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月. 基于神光Ⅲ原型装置的激光加载条件下准等熵压缩实验研究进展. 物理学报, 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [14] 王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析. 物理学报, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [15] 满天龙, 万玉红, 江竹青, 王大勇, 陶世荃. 孪生光束干涉法测量光源的空间相干性. 物理学报, 2013, 62(21): 214203. doi: 10.7498/aps.62.214203
    [16] 殷丽梅, 张伟刚, 薛晓琳, 白志勇, 魏石磊. 飞秒激光刻蚀非平行壁光纤微腔Mach-Zehnder干涉仪特性及其流体传感研究. 物理学报, 2012, 61(17): 170701. doi: 10.7498/aps.61.170701
    [17] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪. 物理学报, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [18] 郑力明, 王发强, 刘颂豪. 光纤色散与损耗对光量子密钥分发系统的影响. 物理学报, 2007, 56(4): 2180-2183. doi: 10.7498/aps.56.2180
    [19] 郑远, 于丽, 杨伯君, 张晓光. 能够补偿二阶偏振模色散的三阶段偏振模色散补偿器. 物理学报, 2002, 51(12): 2745-2749. doi: 10.7498/aps.51.2745
    [20] 权夕祖. 扫描球面-平面干涉仪. 物理学报, 1975, 24(5): 375-380. doi: 10.7498/aps.24.375
计量
  • 文章访问数:  3683
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-11
  • 修回日期:  2015-06-28
  • 刊出日期:  2015-11-05

基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究

  • 1. 哈尔滨工业大学电气工程及其自动化学院, 哈尔滨 150001
  • 通信作者: 甘雨, ganyu@hit.edu.cn
    基金项目: 国家自然科学基金(批准号: 51275120, 61275096)资助的课题.

摘要: 为了实现更高分辨率的激光频率扫描干涉测量, 增大光源的扫频范围以及减小扫描频率的非线性成为关键. 采用外腔式大带宽扫频光源结合光纤辅助干涉仪构建的外部时钟频率采样非线性校正是目前较为常用的方法. 本研究发现随着扫频带宽和测量范围的增加, 光纤辅助干涉仪与测量光路中存在的色散失配导致频谱出现严重展宽, 极大的降低了测量的分辨率. 本文建立了辅助干涉仪和测量干涉仪色散失配影响的理论模型, 利用该模型分析了扫频带宽和测量范围与测量分辨率的变化关系, 与实验结果相一致, 并进而提出了基于峰值演化消畸变的色散相位补偿方法, 有效地提高了测量的分辨率, 在2.53 m 处实现了接近理论值的64.5 m的测量分辨率. 该色散失配模型及补偿方法为提高大尺寸激光频率扫描干涉仪的测量分辨率及测距范围提供了参考.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回