搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二次偏振调制测距系统中调制频率与测距精度的关系

肖洋 于晋龙 王菊 王文睿 王子雄 谢田元 于洋 薛纪强

引用本文:
Citation:

二次偏振调制测距系统中调制频率与测距精度的关系

肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元, 于洋, 薛纪强

Relationship between modulation frequency and range accuracy in the double polarization modulation range finding system

Xiao Yang, Yu Jin-Long, Wang Ju, Wang Wen-Rui, Wang Zi-Xiong, Xie Tian-Yuan, Yu Yang, Xue Ji-Qiang
PDF
导出引用
  • 本文在基于二次偏振调制激光测距系统的基础上, 对调制频率与激光测距系统精度的关系做了深入的理论推导和实验验证. 最终得出结论: 相位法激光测距系统的测量精度会随着调制频率的增大而提高, 且精度的提高程度正比于调制频率的不确定度f与测程范围内半波长数N值的比值. 并通过选取合适的调制频率来提高系统的测距精度, 提高后的测距精度可达10-7.
    Accurate measurement of absolute distance is crucial for developing the progressive military, aerospace, manufacturing large scientific instruments and other fields. Instead of the traditional phase discrimination scheme in general phase-shift distance measurement, the double polarization modulation range-finding system can simplify the simulation phase circuit, reduce the phase shift noise and improve the accuracy by using interference phase demodulation. The in-depth discussion of theoretical derivation and experimental verification are proposed based on the double polarization modulation range-finding system. The detailed theoretical analysis of optical structure is proposed, and the factors affecting the range accuracy are analyzed based on the theoretical formula of ranging result. Finally, the theoretical formula of range accuracy is obtained, and experimental validation is carried out. In this experiment, the wavelength of laser source is 735 nm, and the phase modulator is 4431 model from the Newport company. The ranging experiment is conducted in the modulation frequency ranges of 0.75-0.85 GHz, 2.7-2.8 GHz, 4.3-4.4 GHz, 6.1-6.2 GHz, and 7.8-7.9 GHz. Experimental results indicate that the measurement accuracy of phase-shift range-finding technology is improved with the increase of modulation frequency. Moreover, the accuracy is proportional to the parameter f/N, in which f is the modulation frequency uncertainty and N is an integer in our algorithm. With the appropriate modulation frequency, the range accuracy of the double polarization modulation range-finding system can reach up to 10-7.
      通信作者: 王菊, wangju@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61427817,61405142)和高等学校博士学科点专项科研基金(批准号:20120032130010)资助的课题.
      Corresponding author: Wang Ju, wangju@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61427817, 61405142) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032130010).
    [1]

    Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602 (in Chinese) [黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛继强 2014 物理学报 63 100602]

    [2]

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese) [吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 物理学报 63 100601]

    [3]

    White N 2000 Nature 407 146

    [4]

    Xu H, Li X Y, Xiao X, Li Z Y, Yu Y D, Yu J Z 2013 Chin. Phys. B 22 114212

    [5]

    Shi G, Zhang F M, Qu X H, Meng X S 2014 Acta Phys. Sin. 63 184209 (in Chinese) [时光, 张福民, 曲兴华, 孟祥松 2014 物理学报 63 184209]

    [6]

    Song S B, Xu L P, Zhang H, Gao N, Shen Y H 2015 Chin. Phys. B 24 057201

    [7]

    Meng Y S, Zhong X W, Yang S S 2008 Space Electronic Technology 3 51 (in Chinese) [蒙艳松, 钟兴旺, 杨姗姗 2008 空间电子技术 3 51]

    [8]

    Reigber C, Schmidt R, Flechtner F, Konig R, Meyer U, Neumayer K H, Schwintzer P, Zhu S Y 2005 J. Geodyn. 39 1

    [9]

    Wan Q Y, Zhou Z B 2008 Geophysical Geochemical Exploration 32 383 (in Chinese) [万庆元, 周泽兵 2008 物探与化探 32 383]

    [10]

    Gueuning F, Varlan M, Eugene C, Dupuis P 1996 Instrumentation and Measurement Technology Conference Brussels, Belgium, June 4-6, 1996 p399

    [11]

    Amann M C, Bosch T, Lescure M, Myllyla R, Rioux M 2000 Opt. Eng. 40 10

    [12]

    Liu M, Yang X Y, Liu C J 2012 Chinese Journal of Laser 39 0208004 (in Chinese) [刘邈, 杨学友, 刘常杰 2012 中国激光 39 0208004]

    [13]

    Webster D 1991 IEEE Trans. Instrum. Meas. 43 578

    [14]

    Oiwa T, Shioda T, Tanaka Y, Takeda M, Kurokawa T 2007 Conference on Lasers and Electro-Optics/Pacific Rim Seoul South, Korea, August 26, 2007 ThG2-3

    [15]

    Huang K N, Huang Y P 2008 Sensor. Actuat. A: Phys. 149 42

  • [1]

    Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602 (in Chinese) [黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛继强 2014 物理学报 63 100602]

    [2]

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese) [吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 物理学报 63 100601]

    [3]

    White N 2000 Nature 407 146

    [4]

    Xu H, Li X Y, Xiao X, Li Z Y, Yu Y D, Yu J Z 2013 Chin. Phys. B 22 114212

    [5]

    Shi G, Zhang F M, Qu X H, Meng X S 2014 Acta Phys. Sin. 63 184209 (in Chinese) [时光, 张福民, 曲兴华, 孟祥松 2014 物理学报 63 184209]

    [6]

    Song S B, Xu L P, Zhang H, Gao N, Shen Y H 2015 Chin. Phys. B 24 057201

    [7]

    Meng Y S, Zhong X W, Yang S S 2008 Space Electronic Technology 3 51 (in Chinese) [蒙艳松, 钟兴旺, 杨姗姗 2008 空间电子技术 3 51]

    [8]

    Reigber C, Schmidt R, Flechtner F, Konig R, Meyer U, Neumayer K H, Schwintzer P, Zhu S Y 2005 J. Geodyn. 39 1

    [9]

    Wan Q Y, Zhou Z B 2008 Geophysical Geochemical Exploration 32 383 (in Chinese) [万庆元, 周泽兵 2008 物探与化探 32 383]

    [10]

    Gueuning F, Varlan M, Eugene C, Dupuis P 1996 Instrumentation and Measurement Technology Conference Brussels, Belgium, June 4-6, 1996 p399

    [11]

    Amann M C, Bosch T, Lescure M, Myllyla R, Rioux M 2000 Opt. Eng. 40 10

    [12]

    Liu M, Yang X Y, Liu C J 2012 Chinese Journal of Laser 39 0208004 (in Chinese) [刘邈, 杨学友, 刘常杰 2012 中国激光 39 0208004]

    [13]

    Webster D 1991 IEEE Trans. Instrum. Meas. 43 578

    [14]

    Oiwa T, Shioda T, Tanaka Y, Takeda M, Kurokawa T 2007 Conference on Lasers and Electro-Optics/Pacific Rim Seoul South, Korea, August 26, 2007 ThG2-3

    [15]

    Huang K N, Huang Y P 2008 Sensor. Actuat. A: Phys. 149 42

  • [1] 王菊, 邵琦, 于晋龙, 何可瑞, 罗浩, 马闯, 蔡滋恒, 郑紫月, 蔡奔. 基于二次强度调制的激光测距系统. 物理学报, 2023, 72(22): 220601. doi: 10.7498/aps.72.20230997
    [2] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [3] 刘欣宇, 杨苏辉, 廖英琦, 林学彤. 基于小波变换的激光水下测距. 物理学报, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [4] 李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓. 强度调制532 nm激光水下测距. 物理学报, 2021, 70(8): 084203. doi: 10.7498/aps.70.20201612
    [5] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距. 物理学报, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [6] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [7] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术. 物理学报, 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [8] 黄民双, 马鹏, 刘晓晨. 高频共振预探测多脉冲激光测距方法. 物理学报, 2018, 67(7): 074202. doi: 10.7498/aps.67.20172079
    [9] 潘浩, 曲兴华, 史春钊, 李雅婷, 张福民. 激光调频连续波测距的精度评定方法研究. 物理学报, 2018, 67(9): 090201. doi: 10.7498/aps.67.20180142
    [10] 黄科, 李松, 马跃, 田昕, 周辉, 张智宇. 单光子激光测距的漂移误差理论模型及补偿方法. 物理学报, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [11] 张晓声, 易旺民, 胡明皓, 杨再华, 吴冠豪. 基于飞秒激光模间拍频法的大尺寸测距方法. 物理学报, 2016, 65(8): 080602. doi: 10.7498/aps.65.080602
    [12] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [13] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [14] 寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强. 机载多脉冲激光测距特性及其不确定度研究. 物理学报, 2015, 64(12): 120601. doi: 10.7498/aps.64.120601
    [15] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [16] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究. 物理学报, 2014, 63(18): 184209. doi: 10.7498/aps.63.184209
    [17] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [18] 黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强. 基于二次偏振调制的变频测距方法与系统实现. 物理学报, 2014, 63(10): 100602. doi: 10.7498/aps.63.100602
    [19] 王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析. 物理学报, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [20] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. Doppler振镜正弦调制多光束激光外差二次谐波测量角度的方法. 物理学报, 2012, 61(1): 010601. doi: 10.7498/aps.61.010601
计量
  • 文章访问数:  6839
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-17
  • 修回日期:  2016-01-24
  • 刊出日期:  2016-05-05

/

返回文章
返回