搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于电光调制光频梳光谱干涉的绝对测距方法

赵显宇 曲兴华 陈嘉伟 郑继辉 王金栋 张福民

引用本文:
Citation:

一种基于电光调制光频梳光谱干涉的绝对测距方法

赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民

Method of measuring absolute distance based on spectral interferometry using an electro-optic comb

Zhao Xian-Yu, Qu Xing-Hua, Chen Jia-Wei, Zheng Ji-Hui, Wang Jin-Dong, Zhang Fu-Min
PDF
HTML
导出引用
  • 提出了一种基于电光调制光学频率梳的光谱干涉测距方法. 理论分析了电光调制光学频率梳的数学模型和光谱扩展原理, 并分析得出了光谱干涉测距方法的非模糊范围和分辨力的影响因素. 在实验中, 使用三只级联的电光相位调制器调制单频连续波激光生成了40多阶高功率梳齿状边带, 并通过单模光纤和高非线性光纤对电光调制器输出的激光进行光谱扩展, 得到重复频率为10 GHz, 光谱宽度达30 nm的光学频率梳. 将该光频梳作为光谱干涉测距装置的光源, 可以实现无“死区”的绝对距离测量. 另外, 使用等频率间隔重采样和二次方程脉冲峰值拟合算法对测量结果进行数据处理, 可以修正系统误差, 提升测距精度. 实验结果表明, 在1 m的测量范围内, 使用该装置可以在任意位置达到 ± 15 μm以内的绝对测距精度.
    To explore a new generation of ranging method suitable for industrial applications, in this paper, a spectral interferometry ranging method based on electro-optic (EO) comb is proposed. The mathematical model of EO comb and the principle of spectral expansion are analyzed in detail. Besides, the factors affecting the non-ambiguous range and resolution of the spectral interferometry method are also discussed. According to the theoretical analysis, the resolution of spectral interference ranging is mainly affected by the spectrum width of the optical frequency comb, and the non-ambiguous range is affected by the resolution of the optical spectrum analyzer (equal to the highest sampling rate of the optical spectrum analyzer). In the experiment, triple cascaded EO phase modulator is used to modulate a single frequency laser to generate more than 40 high-power sidebands. Then, the laser spectrum output from the EO modulator is expanded by single mode fiber and high nonlinearity fiber. Owing to the use of erbium doped fiber amplifier between the dispersion compensation fiber (single mode fiber) and the highly nonlinearity fiber, the polarization disturbance does not affect the spectrum width of the optical frequency comb significantly. However, the width of spectrum will be still affected by the phases of light, and the phases of light can be adjusted by the phase shifters in the front of the electro-optic modulators. Finally, the EO comb with a repetition frequency of 10 GHz and spectrum width of 30 nm is obtained. The EO comb can be used as the source of spectral interferometry scheme. Since the repetition frequency of the EO comb is high enough, which can meet the distortion-free sampling of optical spectrum analyzer. Hence, there is no “dead zone” in the measurement range. Besides, the equal frequency interval resampling algorithm and quadratic equation fitting algorithm are used in the data processing. Through the use of these algorithms, we can eliminate the measurement errors caused by non-equal frequency interval sampling of the optical spectrum analyzer and improve the ranging accuracy. The experimental results show that within the range of 1 m, the absolute ranging accuracy of 15 μm can be achieved at arbitrary position.
      通信作者: 张福民, zhangfumin@tju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB2003501, 2018YFF0212702)、国家自然科学基金(批准号: 51675380, 51775379)和天津市重点研发计划科技支撑重点项目(批准号: 18YFZCGX00920)资助的课题
      Corresponding author: Zhang Fu-Min, zhangfumin@tju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFB2003501, 2018YFF0212702), the National Natural Science Foundation of China (Grant Nos. 51675380, 51775379), and the Key Technologies R&D Program of Tianjin, China (Grant No. 18YFZCGX00920)
    [1]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [2]

    Sudatham W, Matsumoto H, Takahashi S, Takamasu K 2016 Measurement 78 381Google Scholar

    [3]

    Kayes M I, Rochette M 2019 IEEE Photonics Technol. Lett. 31 775Google Scholar

    [4]

    Liu Y, Yang L, Guo Y, Lin J, Cui P, Zhu J 2018 Opt. Lasers Eng. 101 35Google Scholar

    [5]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351Google Scholar

    [6]

    Suh M G, Vahala K J 2018 Science 359 884Google Scholar

    [7]

    邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603Google Scholar

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603Google Scholar

    [8]

    Zhu Z, Xu G, Ni K, Zhou Q, Wu G 2018 Opt. Express 26 5747Google Scholar

    [9]

    Yang R, Pollinger F, Meiners H K, Krystek M, Tan J, Bosse H 2015 Meas. Sci. Technol. 26 084001Google Scholar

    [10]

    Zhao X, Qu X, Zhang F, Zhao Y, Tang G 2018 Opt. Lett. 43 807Google Scholar

    [11]

    刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601Google Scholar

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601Google Scholar

    [12]

    Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar

    [13]

    van den Berg S A, van Eldik S, Bhattacharya N 2015 Sci. Rep. 5 14661Google Scholar

    [14]

    崔成君, 劳达宝, 高书苑, 郝春艳, 周维虎 2016 光学精密工程 24 2561Google Scholar

    Cui C J, Lao D B, Gao S Y, Hao C Y, Zhou W H 2016 Opt. Precision Eng. 24 2561Google Scholar

    [15]

    胡坤, 黎尧, 纪荣祎, 周维虎, 刘德明 2015 仪表技术与传感器 6 28Google Scholar

    Hu K, Li Y, Ji R, Zhou W, Liu D 2015 Intstrument Technique and Sensor 6 28Google Scholar

    [16]

    Lesundak A, Voigt D, Cip O, Van B S 2017 Opt. Express 25 32570Google Scholar

    [17]

    Kourogi M, Nakagawa K, Ohtsu M 1993 IEEE J. Quantum Electron. 29 2693Google Scholar

    [18]

    He C, Pan S, Guo R, Zhao Y, Pan M 2012 Opt. Lett. 37 3834Google Scholar

    [19]

    Morohashi I, Sakamoto T, Sekine N, Kasamatsu A, Hosako I 2016 Nano Commun. Netw. 10 79Google Scholar

    [20]

    Chen C, Zhang F, Pan S 2013 IEEE Photonics Technol. Lett. 25 2164Google Scholar

    [21]

    Nakajima Y, Inaba H, Hosaka K, Minoshima K, Onae A, Yasuda M, Kohno T, Kawato S, Kobayashi T, Katsuyama T, Hong F L 2010 Opt. Express 18 1667Google Scholar

    [22]

    Yan J, Zhang S, Xia Z, Bai M, Zheng Z 2015 Opt. Laser Technol. 72 74Google Scholar

    [23]

    Wu R, Supradeepa V R, Long C M, Leaird D E, Weiner A M 2010 Opt. Lett. 35 3234Google Scholar

    [24]

    Wu R, Torres C V, Leaird D E, Weiner A M 2013 Opt. Express 21 6045Google Scholar

    [25]

    Yang R, Pollinger F, Meiners H K, Tan J, Bosse H 2014 Opt. Lett. 39 5834Google Scholar

    [26]

    陈嘉伟, 王金栋, 曲兴华, 张福民 2019 物理学报 68 190602Google Scholar

    Chen J, Wang J, Qu X, Zhang F 2019 Acta Phys. Sin. 68 190602Google Scholar

    [27]

    Bonsch G, Potulski E 1998 Metrologia 35 133Google Scholar

  • 图 1  电光调制光频梳生成示意图 (PS: 移相器)

    Fig. 1.  Schematic setup of the electro-optic (EO) comb generation (PS, phase shifter).

    图 2  光谱干涉测距非模糊范围理论示意图

    Fig. 2.  Schematic diagram of the non-ambiguous range of spectral interference ranging.

    图 3  等频率间隔重采样处理示意图 (a)光谱仪等波长间隔采样得到的信号; (b)对横坐标进行波长-频率变换后的信号; (c)对横坐标进行线性坐标转换后的信号; (d)对转换后的信号进行等频率间隔重采样的结果

    Fig. 3.  Schematic diagram of equal frequency interval resampling: (a) Signal obtained by spectrometer with equal wavelength interval sampling; (b) the signal after wavelength-frequency transformed; (c) the signal after linear coordinate transformation on the abscissa; (d) the signal after equal frequency interval resampling.

    图 4  电光调制光频梳光谱干涉测距结构图(BS, 分光棱镜; EDFA, 掺铒光纤放大器)

    Fig. 4.  Experimental setup of EO comb dispersion interferometry (BS, beam splitter; EDFA, erbium doped fiber amplifier).

    图 5  电光调制光频梳光谱图 (a)电光调制器输出的光频梳光谱; (b)经过扩谱后的光频梳光谱; (c)经过带阻滤波后的光频梳光谱

    Fig. 5.  The spectrum of EO comb: (a) The spectrum of EO comb generated by cascaded EO modulators; (b) the EO comb spectrum after spectrum expansion; (c) the EO comb spectrum after band elimination filter.

    图 6  参考臂与测量臂在不同相对位置下的光谱干涉图 (a)相对位置0.3 mm; (b)相对位置0.6 mm; (c)相对位置1 mm; (d)相对位置2 mm

    Fig. 6.  Spectral interferogram of reference arm and measuring arm at a relative position of (a) 0.3 mm, (b) 0.5 mm, (c) 1 mm, (d) 2 mm.

    图 7  等频率间隔重采样数据处理过程图 (a)寻峰算法处理后的光谱干涉图; (b)横坐标转化成频率后的光谱干涉图; (c)对图(a)做傅里叶变换后的结果; (d)对图(b)做傅里叶变换后的结果

    Fig. 7.  Data processing of equal frequency interval resampling. (a) Spectral interferogram processed by peak seeking algorithm; (b) spectrum interferogram after the abscissa is converted into frequency; (c) Fourier transform of panel (a); (d) Fourier transform of panel (b).

    图 8  脉冲峰值数据二次方程拟合过程图(插图是对脉冲及拟合曲线的放大)

    Fig. 8.  Peak position fitting according to quadratic equation. The inset is an enlargement of the pulse and the fitted curve.

    图 9  一个非模糊范围内光谱干涉绝对测距实验结果

    Fig. 9.  Experimental results of spectral interferometry in a non-ambiguous range.

    图 10  跨非模糊范围光谱干涉绝对测距实验结果

    Fig. 10.  Experimental results of spectral interferometry beyond serial non-ambiguous ranges.

  • [1]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [2]

    Sudatham W, Matsumoto H, Takahashi S, Takamasu K 2016 Measurement 78 381Google Scholar

    [3]

    Kayes M I, Rochette M 2019 IEEE Photonics Technol. Lett. 31 775Google Scholar

    [4]

    Liu Y, Yang L, Guo Y, Lin J, Cui P, Zhu J 2018 Opt. Lasers Eng. 101 35Google Scholar

    [5]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351Google Scholar

    [6]

    Suh M G, Vahala K J 2018 Science 359 884Google Scholar

    [7]

    邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603Google Scholar

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603Google Scholar

    [8]

    Zhu Z, Xu G, Ni K, Zhou Q, Wu G 2018 Opt. Express 26 5747Google Scholar

    [9]

    Yang R, Pollinger F, Meiners H K, Krystek M, Tan J, Bosse H 2015 Meas. Sci. Technol. 26 084001Google Scholar

    [10]

    Zhao X, Qu X, Zhang F, Zhao Y, Tang G 2018 Opt. Lett. 43 807Google Scholar

    [11]

    刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601Google Scholar

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601Google Scholar

    [12]

    Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar

    [13]

    van den Berg S A, van Eldik S, Bhattacharya N 2015 Sci. Rep. 5 14661Google Scholar

    [14]

    崔成君, 劳达宝, 高书苑, 郝春艳, 周维虎 2016 光学精密工程 24 2561Google Scholar

    Cui C J, Lao D B, Gao S Y, Hao C Y, Zhou W H 2016 Opt. Precision Eng. 24 2561Google Scholar

    [15]

    胡坤, 黎尧, 纪荣祎, 周维虎, 刘德明 2015 仪表技术与传感器 6 28Google Scholar

    Hu K, Li Y, Ji R, Zhou W, Liu D 2015 Intstrument Technique and Sensor 6 28Google Scholar

    [16]

    Lesundak A, Voigt D, Cip O, Van B S 2017 Opt. Express 25 32570Google Scholar

    [17]

    Kourogi M, Nakagawa K, Ohtsu M 1993 IEEE J. Quantum Electron. 29 2693Google Scholar

    [18]

    He C, Pan S, Guo R, Zhao Y, Pan M 2012 Opt. Lett. 37 3834Google Scholar

    [19]

    Morohashi I, Sakamoto T, Sekine N, Kasamatsu A, Hosako I 2016 Nano Commun. Netw. 10 79Google Scholar

    [20]

    Chen C, Zhang F, Pan S 2013 IEEE Photonics Technol. Lett. 25 2164Google Scholar

    [21]

    Nakajima Y, Inaba H, Hosaka K, Minoshima K, Onae A, Yasuda M, Kohno T, Kawato S, Kobayashi T, Katsuyama T, Hong F L 2010 Opt. Express 18 1667Google Scholar

    [22]

    Yan J, Zhang S, Xia Z, Bai M, Zheng Z 2015 Opt. Laser Technol. 72 74Google Scholar

    [23]

    Wu R, Supradeepa V R, Long C M, Leaird D E, Weiner A M 2010 Opt. Lett. 35 3234Google Scholar

    [24]

    Wu R, Torres C V, Leaird D E, Weiner A M 2013 Opt. Express 21 6045Google Scholar

    [25]

    Yang R, Pollinger F, Meiners H K, Tan J, Bosse H 2014 Opt. Lett. 39 5834Google Scholar

    [26]

    陈嘉伟, 王金栋, 曲兴华, 张福民 2019 物理学报 68 190602Google Scholar

    Chen J, Wang J, Qu X, Zhang F 2019 Acta Phys. Sin. 68 190602Google Scholar

    [27]

    Bonsch G, Potulski E 1998 Metrologia 35 133Google Scholar

  • [1] 赵瀚宇, 曹士英, 戴少阳, 杨涛, 左娅妮, 胡明列. 基于光谱增强技术实现对532 nm波长激光频率标定. 物理学报, 2024, 73(9): 094204. doi: 10.7498/aps.73.20240106
    [2] 周强, 吴腾飞, 曾周末, 邾继贵. 基于双向吸收光谱精准标定的光频扫描干涉绝对测距. 物理学报, 2024, 73(17): 170601. doi: 10.7498/aps.73.20240840
    [3] 田龙, 郑立昂, 张晓莉, 武奕淼, 王庆伟, 秦博, 王雅君, 李卫, 史少平, 陈力荣, 郑耀辉. 谐振型电光相位调制及光电探测功能器件的研发及应用. 物理学报, 2023, 72(14): 148502. doi: 10.7498/aps.72.20230485
    [4] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [5] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [6] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [7] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [8] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [9] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [10] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [11] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [12] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距. 物理学报, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [13] 张澍霖, 冯国英, 周寿桓. 基于空间域和频率域傅里叶变换F2的光纤模式成分分析. 物理学报, 2016, 65(15): 154202. doi: 10.7498/aps.65.154202
    [14] 孟祥松, 张福民, 曲兴华. 基于重采样技术的调频连续波激光绝对测距高精度及快速测量方法研究. 物理学报, 2015, 64(23): 230601. doi: 10.7498/aps.64.230601
    [15] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [16] 周飞, 曹原, 雍海林, 彭承志, 王向斌. 基于电光效应的光子频移研究. 物理学报, 2014, 63(20): 204202. doi: 10.7498/aps.63.204202
    [17] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究. 物理学报, 2014, 63(18): 184209. doi: 10.7498/aps.63.184209
    [18] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [19] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [20] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
计量
  • 文章访问数:  9868
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-12
  • 修回日期:  2020-02-16
  • 刊出日期:  2020-05-05

/

返回文章
返回