-
针对极微弱信号提取及探测需求, 研发高调制深度、低功耗、低半波电压的谐振型电光相位调制(RPM)以及微瓦级、高信噪比谐振型光电探测(RPD)功能器件. 基于单端楔角铌酸锂晶体、低噪声光电二极管及低损高Q电子元件组成谐振电路, 利用谐振增强原理实现低功耗、高调制深度电光调制及高增益光电探测等; 所研发的RPM在最佳调制频点为10.00 MHz时, 带宽为225 kHz, Q值为44.4, 调制深度为1.435时所需射频驱动电压峰值为8 V; RPM在最佳调制频点为20.00 MHz时, 带宽为460 kHz, Q值为43.5, 调制深度为1.435时所需射频驱动电压峰值为13 V; 将自研的RPD最佳探测频点调节为20.00 MHz, 带宽为1 MHz, Q值为20, 增益为80 dB@100 μW; 利用自研RPM和RPD组成极微弱信号提取链路, 在500 mV峰值电压驱动RPM下(调制深度约为0.055), 可实现直接输出误差信号信噪比为5.088@10 μW, 34.933@50 μW以及58.7@100 μW. 极微弱信号提取链路经过比例积分微分参数优化提升整个反馈控制环路性能及稳定性, 为制备高稳定量子光源及超稳激光等领域提供关键器件及技术途径.Photoelectric functional device with specific optical, electrical and photoelectric conversion effects is one of the most important resources of modern information science and technology. Electro-optic modulator and photodetector are very important photoelectric functional devices, which are key devices in the fields of frequency locking, feedback control, photoelectric information conversion, optical communication, photoelectric information modulation, etc., and play an irreplaceable role in frequency stabilization locking technology of PDH (Pound-Drever-Hall, simply referred to as PDH). The PDH technology is widely used in researches of large scientific devices, quantum optics, optical communication and other fields. Using electro-optical phase modulator to carry out laser phase modulation is the primary process to realize frequency stabilization locking of standard PDH. Photoelectric detection can implement the photoelectric conversion of the carried weak modulation signal and spectral peak signal into electrical signal, and then feedback control through proportional integral and differential circuits, so as to achieve stable locking and frequency stabilization. The resonant electro-optical phase modulation (RPM) with high modulation depth, low power consumption and low half-wave voltage and microwatt resonant photoelectric detection (RPD) functional device with high signal-to-noise (SNR) ratio are invented to meet the demand for extraction and detection of extremely weak signals. The resonant circuit is composed of the single-end wedge-angle lithium niobate crystal, low noise photodiode and low-loss and high-Q electronic components. Low power consumption, high modulation depth electro-optic modulation, and high gain photoelectric detection are realized by the principle of resonant enhancement. When the optimal modulation frequency point is 10 MHz, the bandwidth of RPM is 225 kHz with Q of 44.4, when the modulation depth is 1.435, the RPM requires RF drive voltage of RPM to be 4 V. When the optimal modulation frequency point is 20 MHz, the bandwidth of RPM is 460 kHz with Q of 43.5, the required RF drive voltage of RPM is 6.5 V when the modulation depth is 1.435. The optimal detection frequency point of the self-invent RPD is 20.00 MHz, with a bandwidth of 1 MHz, Q of 20, the gain of 80 dB at 100 μW. With the home-made RPM and RPD in the extraction loop for extremely weak signal, the SNR of error signal is as high as 5.088 at 10 μW, 34.933 at 50 μW and 58.7 at 100 μW. Such a loop improves the performance and stability of the entire feedback control loop by optimizing parameters of proportional integral differential, which provides key devices and technological approaches for preparing a highly stable quantum light source and ultra-stable laser.
-
Keywords:
- photoelectric functional device /
- electro-optical modulation /
- photoelectric detection /
- weak signal extraction
[1] 周忠祥 2017 光电功能材料与器件 (北京: 高等教育出版社) 第20页
Zhou Z X 2017 Optoelectronic Functional Materials and Devices (Beijing: Higher Education Press) p20 (in Chinese)
[2] Drever R W, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97
[3] Abramovici A, Althouse W E, Drever R W, Gürsel Y, Kawamura S, Raab F J 1992 Science 256 325Google Scholar
[4] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[5] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar
[6] Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar
[7] Thorlabs, https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=2729 [2023-04-25]
[8] 李庚霖, 贾曰辰, 陈峰 2020 物理学报 69 157801Google Scholar
Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar
[9] 尚成林, 陶诗琪, 孙昊骋, 潘安, 曾成, 夏金松 2022 半导体光电 43 95
Shang C L, Tao S Q, Sun H C, Pan A, Zeng C, Xia J S 2022 Semicond. Optoelectron. 43 95
[10] 刘子溪, 曾成, 夏金松 2022 中国激光 49 1206001Google Scholar
Liu Z X, Zeng C, Xia J S 2022 Chin. J. Lasers 49 1206001Google Scholar
[11] 张腾, 李大为, 王韬, 崔勇, 张天雄, 王丽, 张杰, 徐光 2021 物理学报 70 084202Google Scholar
Zhang T, Li D W, Wang T, Cui Y, Zhang T X, Wang L, Zhang J, Xu G 2021 Acta Phys. Sin. 70 084202Google Scholar
[12] Matei D G, Legero T, Häfner S, Grebing C, Weyrich R, Zhang W, Sterr U 2017 Phys. Rev. Lett. 118 263202Google Scholar
[13] 邰朝阳 2018 博士学位论文 (北京: 中国科学院大学)
Tai C Y 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[14] Shi X H, Zhang J, Zeng X Y, Lü X L, Liu K, Xi J, Ye Y X, Lu Z H 2018 Appl. Phys. B 124 153
[15] Li L F, Wang J, Bi J, Zhang T, Peng J K, Zhi Y L, Chen L S 2021 Rev. Sci. Instrum. 92 043001Google Scholar
[16] Li Z H, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar
[17] Tai Z Y, Yan L L, Zhang Y Y, Zhang X F, Guo W G, Zhang S G, Jiang H F 2016 Opt. Lett. 41 5584Google Scholar
[18] Zhi Y L, Chen L S, Li L F 2022 Opt. Express 30 17936Google Scholar
[19] Dooley K L 2011 Design and Performance of High Laser Power Interferometers for Gravitational-Wave Detection (Florida: University of Florida) p128
[20] Qubig, https://www.qubig.com/products/electro-optic-modulators-230/phase-modulators.html [2023-4-25]
[21] 郑耀辉 焦南婧 李瑞鑫 田龙 王雅君 2022 中国专利 CN112649975B
Zheng Y H, Jiao N J, Li R X, Tian L, Wang Y J 2022 China Patent CN112649975 B(in Chinese)
[22] Kwee P, Willke B, Danzmann K 2009 Opt. Lett. 34 2912Google Scholar
[23] Junker J, Oppermann P, Willke B 2017 Opt. Lett. 42 755Google Scholar
[24] 靳晓丽, 苏静, 郑耀辉 2016 量子光学学报 22 108
Jin X L, Su J, Zheng Y H 2016 J. Quantum Opt. 22 108
[25] 王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 郑耀辉 2022 红外与激光工程 51 111
Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Zheng Y H 2022 Infrared Laser Engineer. 51 111
[26] 潘国鑫, 刘惠, 翟泽辉, 刘建丽 2021 量子光学学报 2 109
Pan G X, Liu H, Zhai Z H, Liu J L 2021 J. Quantum Opt. 2 109
[27] Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Guo G C 2021 Phys. Rev. Lett. 126 010503Google Scholar
[28] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Pan J W 2020 Science 370 1460Google Scholar
[29] 周海军, 王文哲, 郑耀辉 2013 光学精密工程 21 2737Google Scholar
Zhou H J, Wang W Z, Zheng Y H 2013 Opt. Precis. Engineer. 21 2737Google Scholar
[30] Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar
[31] Bowden W, Vianello A, Hobson R 2019 Rev. Sci. Instrum. 90 106106Google Scholar
[32] Grote H 2007 Rev. Sci. Instrum. 78 54704Google Scholar
[33] Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instrum. 87 103114Google Scholar
[34] 陈朝勇 2018 硕士学位论文 (太原: 山西大学)
Chen C Y 2018 M. S. Thesis (Taiyuan: Shanxi University) (in Chinese)
[35] 张培玲 2018 高频电子线路 (北京: 机械工业出版社) 第9页
Zhang P L 2018 High Freq. Circuits (Beijing: China Machine Press) p9 (in Chinese)
[36] 李志秀 2019 博士学位论文(太原: 山西大学)
Li Z X 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[37] 张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 4 456
Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 J. Quantum Opt. 4 456
-
图 3 谐振光电器件测试实验装置图(Laser为全固态激光器; OI为光隔离器; λ/2为半波片; PBS为偏振分束器; RPM为电光相位调制器; HR为高反镜; OSC为示波器; MC为模式清洁器; RPD为共振探测器; PD为光电探测器; NA为网络分析仪)
Fig. 3. Experimental setup for testing resonant photoelectric devices (Laser, solid-state laser; OI, optical isolator; λ/2, half-wave-plate; PBS, polarization beam splitter; RPM, resonant electro-optic phase modulator; HR, high reflective mirror; OSC, oscilloscope; MC, mode cleaner; RPD, resonant photodetector; PD, normal photodetector; NA, network analyzer).
-
[1] 周忠祥 2017 光电功能材料与器件 (北京: 高等教育出版社) 第20页
Zhou Z X 2017 Optoelectronic Functional Materials and Devices (Beijing: Higher Education Press) p20 (in Chinese)
[2] Drever R W, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97
[3] Abramovici A, Althouse W E, Drever R W, Gürsel Y, Kawamura S, Raab F J 1992 Science 256 325Google Scholar
[4] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[5] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar
[6] Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar
[7] Thorlabs, https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=2729 [2023-04-25]
[8] 李庚霖, 贾曰辰, 陈峰 2020 物理学报 69 157801Google Scholar
Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar
[9] 尚成林, 陶诗琪, 孙昊骋, 潘安, 曾成, 夏金松 2022 半导体光电 43 95
Shang C L, Tao S Q, Sun H C, Pan A, Zeng C, Xia J S 2022 Semicond. Optoelectron. 43 95
[10] 刘子溪, 曾成, 夏金松 2022 中国激光 49 1206001Google Scholar
Liu Z X, Zeng C, Xia J S 2022 Chin. J. Lasers 49 1206001Google Scholar
[11] 张腾, 李大为, 王韬, 崔勇, 张天雄, 王丽, 张杰, 徐光 2021 物理学报 70 084202Google Scholar
Zhang T, Li D W, Wang T, Cui Y, Zhang T X, Wang L, Zhang J, Xu G 2021 Acta Phys. Sin. 70 084202Google Scholar
[12] Matei D G, Legero T, Häfner S, Grebing C, Weyrich R, Zhang W, Sterr U 2017 Phys. Rev. Lett. 118 263202Google Scholar
[13] 邰朝阳 2018 博士学位论文 (北京: 中国科学院大学)
Tai C Y 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[14] Shi X H, Zhang J, Zeng X Y, Lü X L, Liu K, Xi J, Ye Y X, Lu Z H 2018 Appl. Phys. B 124 153
[15] Li L F, Wang J, Bi J, Zhang T, Peng J K, Zhi Y L, Chen L S 2021 Rev. Sci. Instrum. 92 043001Google Scholar
[16] Li Z H, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar
[17] Tai Z Y, Yan L L, Zhang Y Y, Zhang X F, Guo W G, Zhang S G, Jiang H F 2016 Opt. Lett. 41 5584Google Scholar
[18] Zhi Y L, Chen L S, Li L F 2022 Opt. Express 30 17936Google Scholar
[19] Dooley K L 2011 Design and Performance of High Laser Power Interferometers for Gravitational-Wave Detection (Florida: University of Florida) p128
[20] Qubig, https://www.qubig.com/products/electro-optic-modulators-230/phase-modulators.html [2023-4-25]
[21] 郑耀辉 焦南婧 李瑞鑫 田龙 王雅君 2022 中国专利 CN112649975B
Zheng Y H, Jiao N J, Li R X, Tian L, Wang Y J 2022 China Patent CN112649975 B(in Chinese)
[22] Kwee P, Willke B, Danzmann K 2009 Opt. Lett. 34 2912Google Scholar
[23] Junker J, Oppermann P, Willke B 2017 Opt. Lett. 42 755Google Scholar
[24] 靳晓丽, 苏静, 郑耀辉 2016 量子光学学报 22 108
Jin X L, Su J, Zheng Y H 2016 J. Quantum Opt. 22 108
[25] 王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 郑耀辉 2022 红外与激光工程 51 111
Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Zheng Y H 2022 Infrared Laser Engineer. 51 111
[26] 潘国鑫, 刘惠, 翟泽辉, 刘建丽 2021 量子光学学报 2 109
Pan G X, Liu H, Zhai Z H, Liu J L 2021 J. Quantum Opt. 2 109
[27] Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Guo G C 2021 Phys. Rev. Lett. 126 010503Google Scholar
[28] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Pan J W 2020 Science 370 1460Google Scholar
[29] 周海军, 王文哲, 郑耀辉 2013 光学精密工程 21 2737Google Scholar
Zhou H J, Wang W Z, Zheng Y H 2013 Opt. Precis. Engineer. 21 2737Google Scholar
[30] Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar
[31] Bowden W, Vianello A, Hobson R 2019 Rev. Sci. Instrum. 90 106106Google Scholar
[32] Grote H 2007 Rev. Sci. Instrum. 78 54704Google Scholar
[33] Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instrum. 87 103114Google Scholar
[34] 陈朝勇 2018 硕士学位论文 (太原: 山西大学)
Chen C Y 2018 M. S. Thesis (Taiyuan: Shanxi University) (in Chinese)
[35] 张培玲 2018 高频电子线路 (北京: 机械工业出版社) 第9页
Zhang P L 2018 High Freq. Circuits (Beijing: China Machine Press) p9 (in Chinese)
[36] 李志秀 2019 博士学位论文(太原: 山西大学)
Li Z X 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[37] 张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 4 456
Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 J. Quantum Opt. 4 456
计量
- 文章访问数: 3363
- PDF下载量: 297
- 被引次数: 0