搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于负光电导效应的PtSe2光电突触器件机理特性与感存算功能

梁卜嘉 危波 康艳 豆树清 夏永顺 郭宝军 崔焕卿 李佳 杨晓阔

引用本文:
Citation:

基于负光电导效应的PtSe2光电突触器件机理特性与感存算功能

梁卜嘉, 危波, 康艳, 豆树清, 夏永顺, 郭宝军, 崔焕卿, 李佳, 杨晓阔

Mechanism characteristics and sensing-storage-computing function of PtSe2 photosynaptic devices based on negative photoconductivity effect

Liang Bujia, Wei Bo, Kang Yan, Dou Shuqing, Xia Yongshun, Guo Baojung, Cui Huanqing, Li Jia, Yang Xiaokuo
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 具有感存算一体的高性能光电突触器件对于开发神经形态视觉系统(NVS)至关重要。本文制备了具有负光响应的PtSe2光电突触器件,测试了该器件在光脉冲刺激下呈现出抑制性突触后电流(IPSC),同时实现了光学可调的突触行为,包括双脉冲易化(PPD)、短程可塑性(STP)、长程可塑性(LTP)。此外,器件表现出对光持续时间的依赖性,模拟3×3传感器阵列展示和验证了图像原位传感和存储功能。利用28×28器件阵列结合人工神经网络(ANN),实现了视觉信息的集成感知–存储–预处理功能,实验结果表明,经过预处理后(去噪后)的图像在经过100个epoch训练后达到91%的准确率。最后,利用器件对不同波长光照所响应的负光电流(NPC)不同,建立了光电突触逻辑门:或非(“NOR”)、与非(“NAND”)和异或(“XOR”),实现了图像逻辑运算。研究结果有力地推进了PtSe2负光响应光电突触器件的应用,为更加集成和高效的NVS铺平道路。
    Machine vision, serving as the "eyes" of artificial intelligence (AI), is one of the key windows for AI to acquire external information. However, traditional machine vision relies on the Von Neumann architecture, where sensing, storage, and processing are separated. This architecture necessitates constant data transfer between different units, inevitably leading to high power consumption and latency. To address these challenges, A PtSe2 photosynaptic device with negative light response was prepared. The device showed an inhibitory postsynaptic current (IPSC) under light pulse stimulation, and achieved optically tunable synaptic behaviors, including double pulse facilitation (PPD), short-range plasticity (STP), and long-range plasticity (LTP). In addition, the device exhibits dependence on light duration, and the image in-situ sensing and storage functions are demonstrated and verified using a 3×3 sensor array. By using 28×28 device array combined with artificial neural network (ANN), the integrated perception-storage-preprocessing function of visual information is realized. The experimental results show that the image after preprocessing (denoising) reaches 91% accuracy after 100 epochs training. Finally,lasers with two representative wavelengths of 405 and 532 were chosen as the light sources in the experiment, and the I-V characteristic curves changes most under the blue light pulse of 450 nm, which is because the blue light has higher photon energy to produce negative light effect. Based on the different photocurrent of the device responding to different wavelengths of light, the photoelectric synaptic logic gates 'NOR','NAND' and 'XOR' are established, which enables image processing functions such as dilation, erosion and difference recognition. The device's power consumption is calculated to be 0.111nJ per spike. The research results show great potential to provide simplified information processing and effectively promote the application of negative photoconductivity of PtSe2, which should help advance more integrated and efficient NVS.
  • [1]

    Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong HP, Chai Y 2019Nat Nan-otechnol 14776

    [2]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020Nature 579 62.

    [3]

    Wang G Z, Wang R B, Kong W Z, Zhang J H 2018Cognitive Neurodynamics 12615

    [4]

    Wei, B, Chen Y B, Han X T, Kang Y, Liang B J, Li C, Yang X K, Liang F, Peng Y X 2025Sci. China Inf. Sci 68

    [5]

    Choi C, Leem J, Kim M, Taqieddin A, Cho C, Cho K W, Lee G J, Seung H, Bae H J, Song Y M, Hyeon T, Aluru N R, Nam S, Kim D H 2020Nat Commun 1 1

    [6]

    Hou Y X, Li Y, Zhang Z C, Li J Q, Qi D H, Chen X D, Wang J J, Yao B W, Yu M X, Lu T B, Zhang J 2020ACS Nano 15 1497

    [7]

    Chen Y B, Huang Y J, Zeng J W, Kang Y, Tan Y L, Xie X N, Wei B, Li C, Liang F, Jiang T 2023ACS Appl Mater Interfaces 15 58631

    [8]

    Li S Y, Li J T, Zhou K, Yan Y, Ding G L, Han S T, Zhou Y 2024Phys Mater 7032002

    [9]

    Lian H X, Liao Q F, Yang B D, Zhai Y B, Han S T, Zhou Y 2021Mater. Chem. C 9 640

    [10]

    Shen L F, Hu L X, Kang F W, Ye Y M, Zhuge F 2022Acta Phys. Sin. 71 148505[沈柳枫,胡令祥,康逢文,叶羽敏,诸葛飞2022物理学报71 148505]

    [11]

    Kang Y, Chen Y B, Tan Y L, Hao H, Li C, Xie X N, Hua W H, Jiang T 2023Journal of Materiomics 9 787

    [12]

    Lee G, Baek J-H, Ren F, Pearton S, Lee G H, Kim J 2021Small 17 2100640

    [13]

    Sun L F, Wang W, Yang H J 2020Advanced Intelligent Systems 2 1900167

    [14]

    Zhao M Y, Hao Y R, Zhang C, Zhai R L, Liu B Q, Liu W C, Wang C 2022Crystals 12 1087

    [15]

    Li C, Yang D L, Sun L F 2022Acta Phys. Sin. 71218504[李策,杨栋梁,孙林锋2022物理学报71 218504]

    [16]

    Li Z C, Wang H L, Wang H P, Li J, Qing F Z, Li X S, Xie D, Zhu H W 2024Nano Res. 16 10189

    [17]

    Wang Y, Liu E F, Gao A Y, Cao T J, Long M S, Pan C, Zhang L L, Zeng J W, Wang C Y, Hu W D, Liang S J, Miao F 2018 ACS Nano 12 9513

    [18]

    Nakanishi H, Bishop K J M, Kowalczyk B, Nitzan A, Weiss E A, Tretiakov K V, Apodaca M M, Klajn R, Stoddart J F, Grzybowski B A 2009Nature 460 371

    [19]

    Wei P C, Chattopadhyay S, Yang M D, Tong S C, Shen J L, Lu C Y, Shih H C, Chen L C, Chen K H 2010Phys. Rev. B 81045306

    [20]

    Ding L W, Liu N S, Li L Y, Wei X, Zhang X H, Su J, Rao J Y, Yang C X, Li W Z, Wang J B, Gu H S, Gao Y H 2015Adv. Mater. 27 3525

    [21]

    Guo N, Hu W D, Liao L, Yip S P, Ho J C, Miao J S, Zhang Z, Zou J, Jiang T, Wu S W, Chen X S, Lu W 2014Adv. Mater. 268203

    [22]

    Lui C H, Frenzel A J, Pilon D V, Lee Y H, Ling X, Akselrod G M, Kong J, Gedik N 2014Phys.Rev. Lett. 113166801.

    [23]

    Yang Y M, Peng X Y, Kim H S, Kim T, Jeon S, Kang H K, Choi W, Song J D, Doh Y J, Yu D 2015Nano Lett. 155875

    [24]

    Zhao Y D, Qiao J S, Yu Z H, Yu P, Xu K, Lau S P, Zhou W, Liu Z, Wang X R, Ji W, Chai Y 2017Adv. Mater. 291604230

    [25]

    Hu X, Zhang H M, Liu Y W, Zhang S M, Sun Y Y, Guo Z X, Sheng Y C, Wang X D, Luo C, Wu X, Wang J L, Hu W D, Xu Z H, Sun Q Q, Zhou P, Shi J, Sun Z Z, Zhang D W, Bao W Z 2019Adv. Funct. Mater. 29 1805614

    [26]

    Choi C, Choi M K, Liu S Y, Kim M, Park O K, Im C, Kim J, Qin X L, Lee G J, Cho K W, Kim M, Joh E, Lee J, Son D, Kwon S H, Jeon N L, Song Y M, Lu N, Kim D H 2017Nat. Commun. 8

    [27]

    Posch C, Serrano-Gotarredona T, Linares-Barranco B, Delbruck T 2014Proc IEEE 102 1470

    [28]

    Luo Z D, Xia X, Yang M M, Wilson N R, Gruverman A, Alexe M 2020ACS Nano 14 746

    [29]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591

    [30]

    G George A, Fistul M V, Gruenewald M, Kaiser D, Lehnert T, Mupparapu R, Neumann C, Hubner U, Schaal M, Masurkar N, Arava L M R, Staude I, Kaiser U, Fritz T, Turchanin A 2021npj 2D Mater Appl 5

    [31]

    CHANG T, JO S-H, LU W 2011 ACS Nano 5 7669

    [32]

    Li D Y, Li C, Ilyas N,Jiang X D, Liu F C, Gu D E, Xu M, Jiang Y D, Li W 2020 Adv Intelligent System 2

    [33]

    de Ronde W, ten Wolde P R, Mugler A 2012Biophys. J. 103 1097

    [34]

    Deng Y, Liu S, Ma X, Guo S, Zhai B, Zhang Z, Li M, Yu Y, Hu W, Yang H, Kapitonov Y, Han J, Wu J, Li Y, Zhai T 2024Adv. Mater. 36230940

    [35]

    Sun Y L, Qian L, Xie D, Lin Y X, Sun M X, Li W W, Ding L M, Ren T L, Palacios T 2019Adv. Funct. Mater. 291902538

    [36]

    Abnavi A, Ahmadi R, Hasani A, Fawzy M, Mohammadzadeh M R, De Silva T, Yu N N, Adachi M M 2021ACS Appl. Mater. Interfaces 13 45843

    [37]

    Wang W X, Gao S, Li Y, Yue W J, Kan H, Zhang C W, Lou Z, Wang L L, Shen G Z 2021Adv. Funct. Mater. 312101201

  • [1] 杨卫涛, 胡志良, 何欢, 莫莉华, 赵小红, 宋伍庆, 易天成, 梁天骄, 贺朝会, 李永宏, 王斌, 吴龙胜, 刘欢, 时光. 近存计算架构AI芯片中子单粒子效应. 物理学报, doi: 10.7498/aps.73.20240430
    [2] 李岩, 陈鑫力, 王伟胜, 石智文, 竺立强. 蛋壳膜电解质栅控氧化物神经形态晶体管. 物理学报, doi: 10.7498/aps.72.20230411
    [3] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, doi: 10.7498/aps.71.20212017
    [4] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, doi: 10.7498/aps.71.20221424
    [5] 朱佳雪, 张续猛, 王睿, 刘琦. 面向神经形态感知和计算的柔性忆阻器基脉冲神经元. 物理学报, doi: 10.7498/aps.71.20212323
    [6] 陈阳洋, 何毓辉, 缪向水, 杨道虹. 基于3D-NAND的神经形态计算. 物理学报, doi: 10.7498/aps.71.20220974
    [7] 蒋子寒, 柯硕, 祝影, 朱一新, 朱力, 万昌锦, 万青. 柔性神经形态晶体管及其仿生感知应用. 物理学报, doi: 10.7498/aps.71.20220308
    [8] 江碧怡, 周菲迟, 柴扬. 神经形态阻变器件在图像处理中的应用. 物理学报, doi: 10.7498/aps.71.20220463
    [9] 沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞. 光电神经形态器件及其应用. 物理学报, doi: 10.7498/aps.71.20220111
    [10] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, doi: 10.7498/aps.71.20220226
    [11] 王童, 温娟, 吕康, 陈健中, 汪亮, 郭新. 仿生生物感官的感存算一体化系统. 物理学报, doi: 10.7498/aps.71.20220281
    [12] 单旋宇, 王中强, 谢君, 郑嘉慧, 徐海阳, 刘益春. 面向感存算一体化的光电忆阻器件研究进展. 物理学报, doi: 10.7498/aps.71.20220350
    [13] 任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇. 基于忆容器件的神经形态计算研究进展. 物理学报, doi: 10.7498/aps.70.20201632
    [14] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器. 物理学报, doi: 10.7498/aps.69.20201044
    [15] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, doi: 10.7498/aps.68.20191023
    [16] 董占民, 孙红三, 许佳, 李一, 孙家林. 宏观长Ag2S纳米线簇的制备及其温度电导特性和光电导特性. 物理学报, doi: 10.7498/aps.60.077304
    [17] 施卫, 马湘蓉, 薛红. 半绝缘GaAs光电导开关的瞬态热效应. 物理学报, doi: 10.7498/aps.59.5700
    [18] 杨少鹏, 郑红芳, 李春雷, 傅广生, 李晓苇, 许春华, 李金培. 纳米硫化镍增感的溴化银微晶中光电子衰减特性研究. 物理学报, doi: 10.7498/aps.55.2144
    [19] 王 熠, 翟宏琛, 母国光. 基于形态矩阵的图像模糊匹配方法. 物理学报, doi: 10.7498/aps.54.1965
    [20] 李晓苇, 李新政, 江晓利, 于 威, 田晓东, 杨少鹏, 傅广生. S+Au增感中心的电子陷阱效应对光电子行为的影响. 物理学报, doi: 10.7498/aps.53.2019
计量
  • 文章访问数:  56
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-14

/

返回文章
返回