搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于负光电导效应的PtSe2光电突触器件机理特性与感存算功能

梁卜嘉 危波 康艳 豆树清 夏永顺 郭宝军 崔焕卿 李佳 杨晓阔

引用本文:
Citation:

基于负光电导效应的PtSe2光电突触器件机理特性与感存算功能

梁卜嘉, 危波, 康艳, 豆树清, 夏永顺, 郭宝军, 崔焕卿, 李佳, 杨晓阔
cstr: 32037.14.aps.74.20250403

Mechanism, characteristics and sensing, storage and computing function of PtSe2 photoelectric synaptic devices based on negative photoconductivity effect

LIANG Bujia, WEI Bo, KANG Yan, DOU Shuqing, XIA Yongshun, GUO Baojun, CUI Huanqing, LI Jia, YANG Xiaokuo
cstr: 32037.14.aps.74.20250403
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 具有感存算一体的高性能光电突触器件对于开发神经形态视觉系统(NVS)至关重要. 本文制备了具有负光响应的PtSe2光电突触器件, 测试了该器件在光脉冲刺激下呈现出抑制性突触后电流, 同时实现了光学可调的突触行为, 包括双脉冲易化、短程可塑性、长程可塑性. 此外, 器件表现出对光持续时间的依赖性, 模拟3×3传感器阵列展示和验证了图像原位传感和存储功能. 利用28×28器件阵列结合人工神经网络, 实现了视觉信息的集成感知-存储-预处理功能, 实验结果表明, 预处理后(去噪后)的图像在经过100个epoch训练后达到91%的准确率. 最后, 利用器件对不同波长光照所响应的负光电导不同, 建立了光电突触逻辑门: 或非(“NOR”)、与非(“NAND”)和异或(“XOR”), 实现了图像逻辑运算. 研究结果有力地推进了PtSe2负光响应光电突触器件的应用, 为更加集成和高效的NVS铺平道路.
    Machine vision, serving as the “eyes” of artificial intelligence (AI), is one of the key windows for AI to acquire external information. However, traditional machine vision relies on the Von Neumann architecture, where sensing, storage, and processing are separated. This architecture necessitates constant data transfer between different units, inevitably leading to high power consumption and latency. To address these challenges, a PtSe2 photosynaptic device with negative light response is prepared. The device shows an inhibitory postsynaptic current (IPSC) under light pulse stimulation, and achieves optically tunable synaptic behaviors, including double pulse facilitation (PPD), short-range plasticity (STP), and long-range plasticity (LTP). In addition, by using a 3 × 3 sensor array, the device exhibits dependence on light duration, and the image in-situ sensing and storage functions are demonstrated and verified. By using 28 × 28 device array combined with artificial neural network (ANN), the integrated perception-storage-preprocessing function of visual information is realized. The experimental results show that the image after preprocessing (denoising) is trained for 100 epochs, and the accuracy rate reaches 91%. Finally, lasers with two representative wavelengths of 405 nm and 532 nm are chosen as the light sources in the experiment, and the I-V characteristic curve changes most under the blue light pulse of 450 nm, which is because the blue light has higher photon energy to produce negative light effect. Based on the different photocurrents of the device responding to different wavelengths of light, the photoelectric synaptic logic gates ‘NOR’, ‘NAND’ and ‘XOR’ are established, which enables image processing functions such as dilation, erosion and difference recognition. The device’s power consumption is calculated to be 0.111 nJ per spike. The research results indicate that the negative photoconductivity of PtSe2 has great potential in simplifying information processing and effectively promoting applications, which will help promote more integrated and efficient NVS.
      通信作者: 杨晓阔, yangxk0123@163.com
    • 基金项目: 国家自然科学基金(批准号: 62274183)资助的课题.
      Corresponding author: YANG Xiaokuo, yangxk0123@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62274183).
    [1]

    Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [2]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [3]

    Wang G Z, Wang R B, Kong W Z, Zhang J H 2018 Cogn. Neurodynamics 12 615Google Scholar

    [4]

    Wei B, Chen Y B, Han X T, Kang Y, Liang B J, Li C, Yang X K, Liang F, Peng Y X 2025 Sci. China Inf. Sci. 68 140406Google Scholar

    [5]

    Choi C, Leem J, Kim M, Taqieddin A, Cho C, Cho K W, Lee G J, Seung H, Bae H J, Song Y M, Hyeon T, Aluru N R, Nam S, Kim D H 2020 Nat. Commun. 11 5934Google Scholar

    [6]

    Hou Y X, Li Y, Zhang Z C, Li J Q, Qi D H, Chen X D, Wang J J, Yao B W, Yu M X, Lu T B, Zhang J 2020 ACS Nano 15 1497Google Scholar

    [7]

    Chen Y B, Huang Y J, Zeng J W, Kang Y, Tan Y L, Xie X N, Wei B, Li C, Liang F, Jiang T 2023 ACS Appl. Mater. Interfaces 15 58631Google Scholar

    [8]

    Li S Y, Li J T, Zhou K, Yan Y, Ding G L, Han S T, Zhou Y 2024 Phys. Mater. 7 032002Google Scholar

    [9]

    Lian H X, Liao Q F, Yang B D, Zhai Y B, Han S T, Zhou Y 2021 Mater. Chem. C 9 640Google Scholar

    [10]

    沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞 2022 物理学报 71 148505Google Scholar

    Shen L F, Hu L X, Kang F W, Ye Y M, Zhuge F 2022 Acta Phys. Sin. 71 148505Google Scholar

    [11]

    Kang Y, Chen Y B, Tan Y L, Hao H, Li C, Xie X N, Hua W H, Jiang T 2023 J. Materiomics 9 787Google Scholar

    [12]

    Lee G, Baek J H, Ren F, Pearton S, Lee G H, Kim J 2021 Small 17 2100640Google Scholar

    [13]

    Sun L F, Wang W, Yang H J 2020 Adv. Intellig. Syst. 2 1900167Google Scholar

    [14]

    Zhao M Y, Hao Y R, Zhang C, Zhai R L, Liu B Q, Liu W C, Wang C 2022 Crystals 12 1087Google Scholar

    [15]

    李策, 杨栋梁, 孙林锋 2022 物理学报 71 218504Google Scholar

    Li C, Yang D L, Sun L F 2022 Acta Phys. Sin. 71 218504Google Scholar

    [16]

    Li Z C, Wang H L, Wang H P, Li J, Qing F Z, Li X S, Xie D, Zhu H W 2024 Nano Res. 16 10189Google Scholar

    [17]

    Wang Y, Liu E F, Gao A Y, Cao T J, Long M S, Pan C, Zhang L L, Zeng J W, Wang C Y, Hu W D, Liang S J, Miao F 2018 ACS Nano 12 9513Google Scholar

    [18]

    Nakanishi H, Bishop K J M, Kowalczyk B, Nitzan A, Weiss E A, Tretiakov K V, Apodaca M M, Klajn R, Stoddart J F, Grzybowski B A 2009 Nature 460 371Google Scholar

    [19]

    Wei P C, Chattopadhyay S, Yang M D, Tong S C, Shen J L, Lu C Y, Shih H C, Chen L C, Chen K H 2010 Phys. Rev. B 81 045306Google Scholar

    [20]

    Ding L W, Liu N S, Li L Y, Wei X, Zhang X H, Su J, Rao J Y, Yang C X, Li W Z, Wang J B, Gu H S, Gao Y H 2015 Adv. Mater. 27 3525Google Scholar

    [21]

    Guo N, Hu W D, Liao L, Yip S P, Ho J C, Miao J S, Zhang Z, Zou J, Jiang T, Wu S W, Chen X S, Lu W 2014 Adv. Mater. 26 8203Google Scholar

    [22]

    Lui C H, Frenzel A J, Pilon D V, Lee Y H, Ling X, Akselrod G M, Kong J, Gedik N 2014 Phys. Rev. Lett. 113 166801Google Scholar

    [23]

    Yang Y M, Peng X Y, Kim H S, Kim T, Jeon S, Kang H K, Choi W, Song J D, Doh Y J, Yu D 2015 Nano Lett. 15 5875Google Scholar

    [24]

    Zhao Y D, Qiao J S, Yu Z H, Yu P, Xu K, Lau S P, Zhou W, Liu Z, Wang X R, Ji W, Chai Y 2017 Adv. Mater. 29 1604230Google Scholar

    [25]

    Hu X, Zhang H M, Liu Y W, Zhang S M, Sun Y Y, Guo Z X, Sheng Y C, Wang X D, Luo C, Wu X, Wang J L, Hu W D, Xu Z H, Sun Q Q, Zhou P, Shi J, Sun Z Z, Zhang D W, Bao W Z 2019 Adv. Funct. Mater. 29 1805614Google Scholar

    [26]

    Choi C, Choi M K, Liu S Y, Kim M, Park O K, Im C, Kim J, Qin X L, Lee G J, Cho K W, Kim M, Joh E, Lee J, Son D, Kwon S H, Jeon N L, Song Y M, Lu N, Kim D H 2017 Nat. Commun. 8 1664Google Scholar

    [27]

    Posch C, Serrano-Gotarredona T, Linares-Barranco B, Delbruck T 2014 Proc. IEEE 102 1470Google Scholar

    [28]

    Luo Z D, Xia X, Yang M M, Wilson N R, Gruverman A, Alexe M 2020 ACS Nano 14 746Google Scholar

    [29]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591Google Scholar

    [30]

    George A, Fistul M V, Gruenewald M, Kaiser D, Lehnert T, Mupparapu R, Neumann C, Hubner U, Schaal M, Masurkar N, Arava L M R, Staude I, Kaiser U, Fritz T, Turchanin A 2021 npj 2D Mater. Appl. 5 15

    [31]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669Google Scholar

    [32]

    Li D Y, Li C M, Ilyas N, Jiang X D, Liu F C, Gu D E, Xu M, Jiang Y D, Li W 2020 Adv. Intelligent Syst. 2 2000107Google Scholar

    [33]

    de Ronde W, ten Wolde P R, Mugler A 2012 Biophys. J. 103 1097

    [34]

    Deng Y, Liu S H, Ma X X, Guo S Y, Zhai B X, Zhang Z H, Li M S, Yu Y M, Hu W H, Yang H, Kapitonov Y, Han J B, Wu J S, Li Y, Zhai T Y 2024 Adv. Mater. 36 230940Google Scholar

    [35]

    Sun Y L, Qian L, Xie D, Lin Y X, Sun M X, Li W W, Ding L M, Ren T L, Palacios T 2019 Adv. Funct. Mater. 29 1902538Google Scholar

    [36]

    Abnavi A, Ahmadi R, Hasani A, Fawzy M, Mohammadzadeh M R, De Silva T, Yu N N, Adachi M M 2021 ACS Appl. Mater. Interfaces 13 45843Google Scholar

    [37]

    Wang W X, Gao S, Li Y, Yue W J, Kan H, Zhang C W, Lou Z, Wang L L, Shen G Z 2021 Adv. Funct. Mater. 31 2101201Google Scholar

  • 图 1  (a) PtSe2的光学图像; (b)拉曼光谱图

    Fig. 1.  (a) Optical image of PtSe2; (b) Raman spectra.

    图 2  (a)人类视觉系统示意图; (b) PtSe2的光电突触器件示意图; (c) 532 nm光照射下PtSe2的光电突触的负光电突触响应

    Fig. 2.  (a) Schematic of human visual system; (b) schematic of PtSe2 photoelectric synaptic device; (c) response curve under 532 nm light irradiation.

    图 3  PtSe2光电突触的ΔIPSC响应与光刺激 (a)持续时间; (b)光强; (c)读取电压的关系; (d)记忆保持特性曲线; (e)两个连续的光脉冲诱导的IPSC; (f) PPD 指数与脉冲间隔之间的关系; (g) ΔIPSC在20个绿光脉冲下的光响应; (h)增益(A4/A1)与频率的关系; (i) NPC机理示意图

    Fig. 3.  ΔIPSC response and light stimulation of PtSe2 photoelectric synapse: (a) Light duration time; (b) light intensity; (c) reading voltage; (d) curve of memory retention ratio; (e) the ΔIPSC triggered by two consecutive light pulses; (f) PPD index as a function of the interval of light pulse pairs; (g) ΔIPSC response under 20 green light pulses; (h) relationship between gain (A4/A1) and frequency; (i) schematic diagram of the NPC mechanism.

    图 4  (a) 施加光脉冲后 0, 10和30 s的|∆IPSC|变化; (b)人类视觉系统实现特征提取的示意图

    Fig. 4.  (a) Change of ∆IPSC at 0, 10, and 30 s after the light is turned off; (b) schematic diagram of human vision system realizing feature extraction.

    图 5  (a)将图像“5”映射到突触阵列的掩膜方法示意图; (b) |∆IPSC|与脉冲数目的关系; (c)数字目标增强; (d)人工神经网络(ANN); (e)图像识别结果与光脉冲数量的关系; (f) NVS中的图像去噪; (g)不同数据集上识别准确性的比较

    Fig. 5.  (a) Schematic diagram of the mask method for mapping the image ‘5’ to the synaptic array; (b) statistical information on the relationship between |∆IPSC| and pulse number; (c) number recognition enhancement; (d) an artificial neural network (ANN) for processing image data; (e) relationship between image recognition results and the number of optical pulses; (f) image denoising in NVS; (g) comparisons of the recognition accuracy on different datasets.

    图 6  逻辑功能的实现 (a) “NOR”门; (b) “NAND”门

    Fig. 6.  Implementation of logic functions: (a) “NOR” gate; (b) “NAND” gate.

    图 7  实际场景(如移动的车辆)图像的逻辑运算

    Fig. 7.  Logical operations of images of actual scene (such as a moving vehicle).

    表 1  PtSe2光电突触的结构与性能与近几年报道的光电突触的对比

    Table 1.  Device structure and performance of some reported photonic artificial synapses.

    材料 PPC和NPC 波长/nm 功耗/nJ PPF 应用 文献
    Fe7S8/MoS2 PPC 365 1.2 116 感、存、预处理 [34]
    (PEA)2SnI4 PPC 470 15 130 感、存 [35]
    MoS2 PPC 1570 50 130 感、存 [36]
    TiNxO2–x/MoS2 PPC (电抑制) 365 450 137 感、存 [37]
    PtSe2 NPC 532 0.11 184 感、存、预处理、图像逻辑运算 本文
    下载: 导出CSV
  • [1]

    Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [2]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [3]

    Wang G Z, Wang R B, Kong W Z, Zhang J H 2018 Cogn. Neurodynamics 12 615Google Scholar

    [4]

    Wei B, Chen Y B, Han X T, Kang Y, Liang B J, Li C, Yang X K, Liang F, Peng Y X 2025 Sci. China Inf. Sci. 68 140406Google Scholar

    [5]

    Choi C, Leem J, Kim M, Taqieddin A, Cho C, Cho K W, Lee G J, Seung H, Bae H J, Song Y M, Hyeon T, Aluru N R, Nam S, Kim D H 2020 Nat. Commun. 11 5934Google Scholar

    [6]

    Hou Y X, Li Y, Zhang Z C, Li J Q, Qi D H, Chen X D, Wang J J, Yao B W, Yu M X, Lu T B, Zhang J 2020 ACS Nano 15 1497Google Scholar

    [7]

    Chen Y B, Huang Y J, Zeng J W, Kang Y, Tan Y L, Xie X N, Wei B, Li C, Liang F, Jiang T 2023 ACS Appl. Mater. Interfaces 15 58631Google Scholar

    [8]

    Li S Y, Li J T, Zhou K, Yan Y, Ding G L, Han S T, Zhou Y 2024 Phys. Mater. 7 032002Google Scholar

    [9]

    Lian H X, Liao Q F, Yang B D, Zhai Y B, Han S T, Zhou Y 2021 Mater. Chem. C 9 640Google Scholar

    [10]

    沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞 2022 物理学报 71 148505Google Scholar

    Shen L F, Hu L X, Kang F W, Ye Y M, Zhuge F 2022 Acta Phys. Sin. 71 148505Google Scholar

    [11]

    Kang Y, Chen Y B, Tan Y L, Hao H, Li C, Xie X N, Hua W H, Jiang T 2023 J. Materiomics 9 787Google Scholar

    [12]

    Lee G, Baek J H, Ren F, Pearton S, Lee G H, Kim J 2021 Small 17 2100640Google Scholar

    [13]

    Sun L F, Wang W, Yang H J 2020 Adv. Intellig. Syst. 2 1900167Google Scholar

    [14]

    Zhao M Y, Hao Y R, Zhang C, Zhai R L, Liu B Q, Liu W C, Wang C 2022 Crystals 12 1087Google Scholar

    [15]

    李策, 杨栋梁, 孙林锋 2022 物理学报 71 218504Google Scholar

    Li C, Yang D L, Sun L F 2022 Acta Phys. Sin. 71 218504Google Scholar

    [16]

    Li Z C, Wang H L, Wang H P, Li J, Qing F Z, Li X S, Xie D, Zhu H W 2024 Nano Res. 16 10189Google Scholar

    [17]

    Wang Y, Liu E F, Gao A Y, Cao T J, Long M S, Pan C, Zhang L L, Zeng J W, Wang C Y, Hu W D, Liang S J, Miao F 2018 ACS Nano 12 9513Google Scholar

    [18]

    Nakanishi H, Bishop K J M, Kowalczyk B, Nitzan A, Weiss E A, Tretiakov K V, Apodaca M M, Klajn R, Stoddart J F, Grzybowski B A 2009 Nature 460 371Google Scholar

    [19]

    Wei P C, Chattopadhyay S, Yang M D, Tong S C, Shen J L, Lu C Y, Shih H C, Chen L C, Chen K H 2010 Phys. Rev. B 81 045306Google Scholar

    [20]

    Ding L W, Liu N S, Li L Y, Wei X, Zhang X H, Su J, Rao J Y, Yang C X, Li W Z, Wang J B, Gu H S, Gao Y H 2015 Adv. Mater. 27 3525Google Scholar

    [21]

    Guo N, Hu W D, Liao L, Yip S P, Ho J C, Miao J S, Zhang Z, Zou J, Jiang T, Wu S W, Chen X S, Lu W 2014 Adv. Mater. 26 8203Google Scholar

    [22]

    Lui C H, Frenzel A J, Pilon D V, Lee Y H, Ling X, Akselrod G M, Kong J, Gedik N 2014 Phys. Rev. Lett. 113 166801Google Scholar

    [23]

    Yang Y M, Peng X Y, Kim H S, Kim T, Jeon S, Kang H K, Choi W, Song J D, Doh Y J, Yu D 2015 Nano Lett. 15 5875Google Scholar

    [24]

    Zhao Y D, Qiao J S, Yu Z H, Yu P, Xu K, Lau S P, Zhou W, Liu Z, Wang X R, Ji W, Chai Y 2017 Adv. Mater. 29 1604230Google Scholar

    [25]

    Hu X, Zhang H M, Liu Y W, Zhang S M, Sun Y Y, Guo Z X, Sheng Y C, Wang X D, Luo C, Wu X, Wang J L, Hu W D, Xu Z H, Sun Q Q, Zhou P, Shi J, Sun Z Z, Zhang D W, Bao W Z 2019 Adv. Funct. Mater. 29 1805614Google Scholar

    [26]

    Choi C, Choi M K, Liu S Y, Kim M, Park O K, Im C, Kim J, Qin X L, Lee G J, Cho K W, Kim M, Joh E, Lee J, Son D, Kwon S H, Jeon N L, Song Y M, Lu N, Kim D H 2017 Nat. Commun. 8 1664Google Scholar

    [27]

    Posch C, Serrano-Gotarredona T, Linares-Barranco B, Delbruck T 2014 Proc. IEEE 102 1470Google Scholar

    [28]

    Luo Z D, Xia X, Yang M M, Wilson N R, Gruverman A, Alexe M 2020 ACS Nano 14 746Google Scholar

    [29]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591Google Scholar

    [30]

    George A, Fistul M V, Gruenewald M, Kaiser D, Lehnert T, Mupparapu R, Neumann C, Hubner U, Schaal M, Masurkar N, Arava L M R, Staude I, Kaiser U, Fritz T, Turchanin A 2021 npj 2D Mater. Appl. 5 15

    [31]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669Google Scholar

    [32]

    Li D Y, Li C M, Ilyas N, Jiang X D, Liu F C, Gu D E, Xu M, Jiang Y D, Li W 2020 Adv. Intelligent Syst. 2 2000107Google Scholar

    [33]

    de Ronde W, ten Wolde P R, Mugler A 2012 Biophys. J. 103 1097

    [34]

    Deng Y, Liu S H, Ma X X, Guo S Y, Zhai B X, Zhang Z H, Li M S, Yu Y M, Hu W H, Yang H, Kapitonov Y, Han J B, Wu J S, Li Y, Zhai T Y 2024 Adv. Mater. 36 230940Google Scholar

    [35]

    Sun Y L, Qian L, Xie D, Lin Y X, Sun M X, Li W W, Ding L M, Ren T L, Palacios T 2019 Adv. Funct. Mater. 29 1902538Google Scholar

    [36]

    Abnavi A, Ahmadi R, Hasani A, Fawzy M, Mohammadzadeh M R, De Silva T, Yu N N, Adachi M M 2021 ACS Appl. Mater. Interfaces 13 45843Google Scholar

    [37]

    Wang W X, Gao S, Li Y, Yue W J, Kan H, Zhang C W, Lou Z, Wang L L, Shen G Z 2021 Adv. Funct. Mater. 31 2101201Google Scholar

  • [1] 杨卫涛, 胡志良, 何欢, 莫莉华, 赵小红, 宋伍庆, 易天成, 梁天骄, 贺朝会, 李永宏, 王斌, 吴龙胜, 刘欢, 时光. 近存计算架构AI芯片中子单粒子效应. 物理学报, 2024, 73(13): 138502. doi: 10.7498/aps.73.20240430
    [2] 李岩, 陈鑫力, 王伟胜, 石智文, 竺立强. 蛋壳膜电解质栅控氧化物神经形态晶体管. 物理学报, 2023, 72(15): 157302. doi: 10.7498/aps.72.20230411
    [3] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [4] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [5] 朱佳雪, 张续猛, 王睿, 刘琦. 面向神经形态感知和计算的柔性忆阻器基脉冲神经元. 物理学报, 2022, 71(14): 148503. doi: 10.7498/aps.71.20212323
    [6] 陈阳洋, 何毓辉, 缪向水, 杨道虹. 基于3D-NAND的神经形态计算. 物理学报, 2022, 71(21): 210702. doi: 10.7498/aps.71.20220974
    [7] 蒋子寒, 柯硕, 祝影, 朱一新, 朱力, 万昌锦, 万青. 柔性神经形态晶体管及其仿生感知应用. 物理学报, 2022, 71(14): 147301. doi: 10.7498/aps.71.20220308
    [8] 江碧怡, 周菲迟, 柴扬. 神经形态阻变器件在图像处理中的应用. 物理学报, 2022, 71(14): 148504. doi: 10.7498/aps.71.20220463
    [9] 沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞. 光电神经形态器件及其应用. 物理学报, 2022, 71(14): 148505. doi: 10.7498/aps.71.20220111
    [10] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [11] 王童, 温娟, 吕康, 陈健中, 汪亮, 郭新. 仿生生物感官的感存算一体化系统. 物理学报, 2022, 71(14): 148702. doi: 10.7498/aps.71.20220281
    [12] 单旋宇, 王中强, 谢君, 郑嘉慧, 徐海阳, 刘益春. 面向感存算一体化的光电忆阻器件研究进展. 物理学报, 2022, 71(14): 148701. doi: 10.7498/aps.71.20220350
    [13] 任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇. 基于忆容器件的神经形态计算研究进展. 物理学报, 2021, 70(7): 078701. doi: 10.7498/aps.70.20201632
    [14] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器. 物理学报, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [15] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [16] 董占民, 孙红三, 许佳, 李一, 孙家林. 宏观长Ag2S纳米线簇的制备及其温度电导特性和光电导特性. 物理学报, 2011, 60(7): 077304. doi: 10.7498/aps.60.077304
    [17] 施卫, 马湘蓉, 薛红. 半绝缘GaAs光电导开关的瞬态热效应. 物理学报, 2010, 59(8): 5700-5705. doi: 10.7498/aps.59.5700
    [18] 杨少鹏, 郑红芳, 李春雷, 傅广生, 李晓苇, 许春华, 李金培. 纳米硫化镍增感的溴化银微晶中光电子衰减特性研究. 物理学报, 2006, 55(5): 2144-2148. doi: 10.7498/aps.55.2144
    [19] 王 熠, 翟宏琛, 母国光. 基于形态矩阵的图像模糊匹配方法. 物理学报, 2005, 54(5): 1965-1968. doi: 10.7498/aps.54.1965
    [20] 李晓苇, 李新政, 江晓利, 于 威, 田晓东, 杨少鹏, 傅广生. S+Au增感中心的电子陷阱效应对光电子行为的影响. 物理学报, 2004, 53(6): 2019-2023. doi: 10.7498/aps.53.2019
计量
  • 文章访问数:  382
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-27
  • 修回日期:  2025-05-23
  • 上网日期:  2025-06-14
  • 刊出日期:  2025-08-20

/

返回文章
返回