-
具有感存算一体的高性能光电突触器件对于开发神经形态视觉系统(NVS)至关重要。本文制备了具有负光响应的PtSe2光电突触器件,测试了该器件在光脉冲刺激下呈现出抑制性突触后电流(IPSC),同时实现了光学可调的突触行为,包括双脉冲易化(PPD)、短程可塑性(STP)、长程可塑性(LTP)。此外,器件表现出对光持续时间的依赖性,模拟3×3传感器阵列展示和验证了图像原位传感和存储功能。利用28×28器件阵列结合人工神经网络(ANN),实现了视觉信息的集成感知–存储–预处理功能,实验结果表明,经过预处理后(去噪后)的图像在经过100个epoch训练后达到91%的准确率。最后,利用器件对不同波长光照所响应的负光电流(NPC)不同,建立了光电突触逻辑门:或非(“NOR”)、与非(“NAND”)和异或(“XOR”),实现了图像逻辑运算。研究结果有力地推进了PtSe2负光响应光电突触器件的应用,为更加集成和高效的NVS铺平道路。Machine vision, serving as the "eyes" of artificial intelligence (AI), is one of the key windows for AI to acquire external information. However, traditional machine vision relies on the Von Neumann architecture, where sensing, storage, and processing are separated. This architecture necessitates constant data transfer between different units, inevitably leading to high power consumption and latency. To address these challenges, A PtSe2 photosynaptic device with negative light response was prepared. The device showed an inhibitory postsynaptic current (IPSC) under light pulse stimulation, and achieved optically tunable synaptic behaviors, including double pulse facilitation (PPD), short-range plasticity (STP), and long-range plasticity (LTP). In addition, the device exhibits dependence on light duration, and the image in-situ sensing and storage functions are demonstrated and verified using a 3×3 sensor array. By using 28×28 device array combined with artificial neural network (ANN), the integrated perception-storage-preprocessing function of visual information is realized. The experimental results show that the image after preprocessing (denoising) reaches 91% accuracy after 100 epochs training. Finally,lasers with two representative wavelengths of 405 and 532 were chosen as the light sources in the experiment, and the I-V characteristic curves changes most under the blue light pulse of 450 nm, which is because the blue light has higher photon energy to produce negative light effect. Based on the different photocurrent of the device responding to different wavelengths of light, the photoelectric synaptic logic gates 'NOR','NAND' and 'XOR' are established, which enables image processing functions such as dilation, erosion and difference recognition. The device's power consumption is calculated to be 0.111nJ per spike. The research results show great potential to provide simplified information processing and effectively promote the application of negative photoconductivity of PtSe2, which should help advance more integrated and efficient NVS.
-
Keywords:
- PtSe2 /
- Negative photoconductivity /
- Neuromorphic visual system /
- Sensing-storage-computing /
- Image logic operation
-
[1] Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong HP, Chai Y 2019Nat Nan-otechnol 14776
[2] Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020Nature 579 62.
[3] Wang G Z, Wang R B, Kong W Z, Zhang J H 2018Cognitive Neurodynamics 12615
[4] Wei, B, Chen Y B, Han X T, Kang Y, Liang B J, Li C, Yang X K, Liang F, Peng Y X 2025Sci. China Inf. Sci 68
[5] Choi C, Leem J, Kim M, Taqieddin A, Cho C, Cho K W, Lee G J, Seung H, Bae H J, Song Y M, Hyeon T, Aluru N R, Nam S, Kim D H 2020Nat Commun 1 1
[6] Hou Y X, Li Y, Zhang Z C, Li J Q, Qi D H, Chen X D, Wang J J, Yao B W, Yu M X, Lu T B, Zhang J 2020ACS Nano 15 1497
[7] Chen Y B, Huang Y J, Zeng J W, Kang Y, Tan Y L, Xie X N, Wei B, Li C, Liang F, Jiang T 2023ACS Appl Mater Interfaces 15 58631
[8] Li S Y, Li J T, Zhou K, Yan Y, Ding G L, Han S T, Zhou Y 2024Phys Mater 7032002
[9] Lian H X, Liao Q F, Yang B D, Zhai Y B, Han S T, Zhou Y 2021Mater. Chem. C 9 640
[10] Shen L F, Hu L X, Kang F W, Ye Y M, Zhuge F 2022Acta Phys. Sin. 71 148505[沈柳枫,胡令祥,康逢文,叶羽敏,诸葛飞2022物理学报71 148505]
[11] Kang Y, Chen Y B, Tan Y L, Hao H, Li C, Xie X N, Hua W H, Jiang T 2023Journal of Materiomics 9 787
[12] Lee G, Baek J-H, Ren F, Pearton S, Lee G H, Kim J 2021Small 17 2100640
[13] Sun L F, Wang W, Yang H J 2020Advanced Intelligent Systems 2 1900167
[14] Zhao M Y, Hao Y R, Zhang C, Zhai R L, Liu B Q, Liu W C, Wang C 2022Crystals 12 1087
[15] Li C, Yang D L, Sun L F 2022Acta Phys. Sin. 71218504[李策,杨栋梁,孙林锋2022物理学报71 218504]
[16] Li Z C, Wang H L, Wang H P, Li J, Qing F Z, Li X S, Xie D, Zhu H W 2024Nano Res. 16 10189
[17] Wang Y, Liu E F, Gao A Y, Cao T J, Long M S, Pan C, Zhang L L, Zeng J W, Wang C Y, Hu W D, Liang S J, Miao F 2018 ACS Nano 12 9513
[18] Nakanishi H, Bishop K J M, Kowalczyk B, Nitzan A, Weiss E A, Tretiakov K V, Apodaca M M, Klajn R, Stoddart J F, Grzybowski B A 2009Nature 460 371
[19] Wei P C, Chattopadhyay S, Yang M D, Tong S C, Shen J L, Lu C Y, Shih H C, Chen L C, Chen K H 2010Phys. Rev. B 81045306
[20] Ding L W, Liu N S, Li L Y, Wei X, Zhang X H, Su J, Rao J Y, Yang C X, Li W Z, Wang J B, Gu H S, Gao Y H 2015Adv. Mater. 27 3525
[21] Guo N, Hu W D, Liao L, Yip S P, Ho J C, Miao J S, Zhang Z, Zou J, Jiang T, Wu S W, Chen X S, Lu W 2014Adv. Mater. 268203
[22] Lui C H, Frenzel A J, Pilon D V, Lee Y H, Ling X, Akselrod G M, Kong J, Gedik N 2014Phys.Rev. Lett. 113166801.
[23] Yang Y M, Peng X Y, Kim H S, Kim T, Jeon S, Kang H K, Choi W, Song J D, Doh Y J, Yu D 2015Nano Lett. 155875
[24] Zhao Y D, Qiao J S, Yu Z H, Yu P, Xu K, Lau S P, Zhou W, Liu Z, Wang X R, Ji W, Chai Y 2017Adv. Mater. 291604230
[25] Hu X, Zhang H M, Liu Y W, Zhang S M, Sun Y Y, Guo Z X, Sheng Y C, Wang X D, Luo C, Wu X, Wang J L, Hu W D, Xu Z H, Sun Q Q, Zhou P, Shi J, Sun Z Z, Zhang D W, Bao W Z 2019Adv. Funct. Mater. 29 1805614
[26] Choi C, Choi M K, Liu S Y, Kim M, Park O K, Im C, Kim J, Qin X L, Lee G J, Cho K W, Kim M, Joh E, Lee J, Son D, Kwon S H, Jeon N L, Song Y M, Lu N, Kim D H 2017Nat. Commun. 8
[27] Posch C, Serrano-Gotarredona T, Linares-Barranco B, Delbruck T 2014Proc IEEE 102 1470
[28] Luo Z D, Xia X, Yang M M, Wilson N R, Gruverman A, Alexe M 2020ACS Nano 14 746
[29] Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591
[30] G George A, Fistul M V, Gruenewald M, Kaiser D, Lehnert T, Mupparapu R, Neumann C, Hubner U, Schaal M, Masurkar N, Arava L M R, Staude I, Kaiser U, Fritz T, Turchanin A 2021npj 2D Mater Appl 5
[31] CHANG T, JO S-H, LU W 2011 ACS Nano 5 7669
[32] Li D Y, Li C, Ilyas N,Jiang X D, Liu F C, Gu D E, Xu M, Jiang Y D, Li W 2020 Adv Intelligent System 2
[33] de Ronde W, ten Wolde P R, Mugler A 2012Biophys. J. 103 1097
[34] Deng Y, Liu S, Ma X, Guo S, Zhai B, Zhang Z, Li M, Yu Y, Hu W, Yang H, Kapitonov Y, Han J, Wu J, Li Y, Zhai T 2024Adv. Mater. 36230940
[35] Sun Y L, Qian L, Xie D, Lin Y X, Sun M X, Li W W, Ding L M, Ren T L, Palacios T 2019Adv. Funct. Mater. 291902538
[36] Abnavi A, Ahmadi R, Hasani A, Fawzy M, Mohammadzadeh M R, De Silva T, Yu N N, Adachi M M 2021ACS Appl. Mater. Interfaces 13 45843
[37] Wang W X, Gao S, Li Y, Yue W J, Kan H, Zhang C W, Lou Z, Wang L L, Shen G Z 2021Adv. Funct. Mater. 312101201
计量
- 文章访问数: 56
- PDF下载量: 2
- 被引次数: 0